A system for characterization of DEPFET silicon pixel matrices and test beam results S. Furletov University of Bonn On behalf of the DEPFET Collaboration The 12th Vienna Conference on Instrumentation, Vienna 2010 Sergey Furletov, Univ. of Bonn, Germany ### Outline - Introduction to DEPFET readout - → The principle of DEPFET - → Readout electronics - → Data acquisition system (DAQ) - Online monitoring (DQM) - Characterization of DEPFET matrices - Lab measurements: Laser and Am²⁴¹ source - →Test Beam Setup at CERN - Data analysis software - Test Beam results - New developments - Conclusion ### The Principle of DEPFET - The DEPFET is an active pixel sensor which integrates a MOSFET into the high resistivity silicon substrate - in-pixel amplification - Electrons are collected in "internal gate" potential minimum for electrons and modulate transistor current - Transistor can be switched off by external GATE – charge collection still active! - Charge from internal gate is removed via CLEAR contact - Low readout capacitance reduces the noise - Provides fast charge collection in fully depleted bulk - more about DEPFET: www.depfet.org #### Potential distribution [ToSCA-Simulation] ### DEPFET readout sequence - Sources of transistors are connected to common potential - Gates are connected row-wise - Drains are connected column-wise - Readout chip CURO processes all columns in parallel - The SWITCHER chip generates the steering signals for the rows GATE and CLEAR. - DEPFET readout sequence : - → select row with external gate - → readout transistor current : I_sig + I_ped - → clear charge from internal gate - → again readout transistor current: I_ped - → subtract pedestal current - select next row ### Readout chip CURO - CURO CUrent ReadOut consists of: - current memory cells - current comparator - Current based readout with regulated cascodes - CURO readout can work in 2 modes: - → readout all pixels row by row - zero suppression mode (not used) - typical time scale for sample-clear-sample ~320 ns - the general control of readout is managed by FPGA on readout board. - the output of CURO is digitized by a 14 bit ADC and stored in SRAM for a subsequent readout. ### **DEPFET** readout board - A second board (S3B) contains: - **→** FPGA - → ADCs - → buffer RAM - → USB2.0-PC interface. - S3B board provides the read out rate up to 130 Hz - → Data rate about 4.2 MB/s per module (32 kB / frame) ### Network DAQ System - DAQ is based on Linux network distributed client/server architecture which allows: - share resources and tasks - easy scale the system - → remote control and monitoring - easy integration of other detectors - DAQ uses USB 2.0 for data transfer from DEPFET R/O board to PC and TCP/IP to send data to Event Builder. - The DAQ components are: - → a LINUX based USB driver for the DEPFET DAQ board - → a USB readout client transferring data to an event builder via network; - an Event Builder assembling complete events and storing in a shared memory buffer; - → an event server send complete event to consumers (file writer, DQM, upper level DAQ, histogram server); - online Data Quality Monitoring (DQM) package based on ROOT. - Run control server can accept commands from different clients: - → Command line interface via Telnet - → TCL/TK or Root GUI - Another program with TCP connection to Run Control ### Data Quality Monitor - Network Data Acquisition system allows to run powerful Data Quality Monitor on dedicated PC in real time - DQM is based on ROOT: - includes various data access methods: file, shared memory, network - online data processing – pedestal and common mode calculation, cluster reconstruction and simple tracking. - can also act as network histogram server - advanced DQM functionality allows to find most of DAQ and DEPFET matrix problems during the run - WEB interface for remote DQM ### **Power Supplies** - Up to 20 supply voltages are needed for operating a DEPFET system - Special multi channel power supplies have been built to conveniently provide all voltages - Computer controlled power supplies houses in small (15" case): - → one supply per DEPFET module - → safe power on sequence, (μC controlled) - easy voltage and current monitoring - → remote access to voltage settings: - DUT voltage scans Operation voltages of a DEPFET matrix with respect to source (0V) | | Collection | Read | Clear | | | |------------------|------------|------|-------|--|--| | V_{Gate}^* | 3V | -2V | -2V | | | | V_{Clear}^* | 2V | 2V | 15V | | | | V_{Drain}^{**} | -5V | | | | | | $V_{ClearGate}$ | -2V | | | | | | V_{Bulk} | 10V | | | | | | V_{Back}^{***} | -10V50V | | | | | - * * control lines (transferred via Switcher) - ** provided by readout input stage - *** depending on final detector thickness and contact mode #### Laser Measurements in LAB - Laser tests are done in order to study inhomogeneity of the matrix response using laser systems with different wavelengths: - → 682 nm, 810 nm and 1055 nm. - The laser spot is focused on the matrix backplane with spot sizes which vary from 2.5 µm to 5 µm. - The DEPFET module is mounted on a motor-controlled xy-stage with steps of the order of 1 μm, allowing a full automatic scan of the matrix surface - Scanning software controls a motor table, laser and a data acquisition #### Laser measurements - In-pixel structure of DEPFET can be resolved - Pixel size of a DEPFET sensor: - **→** 24x24 µm - Figure shows an example of the variations of the pixel seed signal across the matrix. - Charge is shared in area of 3x3 pixels - → In seed pixel we have about half of total charge Step size: 2µm - Response of DEPFET sensor is mainly depending on three voltages: - Clear High - Clear Low - → Common Clear Gare (CCG) - Automatic Scan of these voltages is used to define optimal parameters of the module. ### Tests with radioactive sources • Internal amplification of DEPFET - G_q defined as: $$\rightarrow$$ $G_q = \Delta I_d / e^-$ - For an absolute measurement of the gain G_q : spectra of radioactive sources are measured - Measurements are usually performed using sources: ⁵⁵ Fe, ¹⁰⁹ Cd, ¹³³ Ba and ²⁴¹ Am - Prototypes with the standard channel geometry have a G of about 400 pA/e - DEPFETs with a scaled channel geometry show even better results $G_q = 650 \text{ pA/e}^-$. #### Energy spectrum of 241 Am ## Matrix homogeneity measurements - The uniformity of the response over the DEPFET sensor has been measured. - A spread of 5 % is observed when comparing the response of the over 16000 pixels of a sensor. - This effect does not affect the spatial resolution significantly. - Also it is possible to correct the difference in pixels gain. ### Test beam infrastructure - Beam tests of DEPFET prototypes form an important complement to the laboratory test procedures - Their main aim is to characterize the response of DEPFET prototypes to minimum ionizing particles, and to establish the spatial resolution of the devices. - Since 2005, DEPFET prototypes have been submitted to multiple beam tests in a 6 GeV electron beams at DESY, 24 GeV proton beams at the CERN PS and 120 GeV pion beams at the CERN SPS. - Sophisticated beam test infrastructure has been developed: - → Mechanics: - support table for installation of DEPFET telescope system - X-Y motor stages with remote control, for alignment of DEPFET modules - → Trigger includes: - scintillation counters in coincidence - Trigger Logic Unit (TLU) for synchronization readout system - → Readout electronics - DEPFET matrix power supply - → Data Acquisition system (DAQ) - Including PCs, network hardware and - → Data quality monitor (DQM) ### **DEPFET Test Beam** - Jul-Aug 2008, August 2009 - CERN SPS H6 beam line - 120 GeV pions Test beam crew also important part of tests #### **DEPFET Telescope** #### **EUDET Telescope + DEPFET as DUT** ### **Mechanics** - Telescope positioning system: - → Mechanics - moving range: 100/150mm, 90°rotation for DUT - positioning accuracy $15\mu m / 2\mu m$ (DUT) - **→** Controllers - Positioning software mounting table (1600x625x1050 mm) ## Test Beam setup for CERN 2009 Beam Area - → 2 readout PC with 3 DEPFET modules per PC, connected via USB2.0 in the test beam area in distance of max. 4 meters from the modules. - → Windows PC to control 6 X-Y motor stages, with USB2.0 connection to controller. - → Trigger Logic Unit (TLU) connected to one of readout PC via USB2.0 - → all PC are connected to 1GB ethernet HUB – USB – SUSE Ethernet HUB #### • Control Room: - → one DAQ server rack mounted server PC: Intel S5000, 8 CPU, 4GB memory, hot swap SATA RAID with 3 TByte disk space total 6 disks. - → working PC : Run Control, DQM, etc.... - → all PC also connected to local ethernet HUB - → both HUBs are connected by ethernet cable, from test beam area to control room SUSE ### Trigger and Events Rate - A dedicated Trigger Logic Unit (TLU) accepts signals from the scintillators or external trigger and generates a signal to trigger the system. - Each trigger carries a unique number and time stamp. - H6 line with 120 GeV pions - Coincidence rate of 2 scintillators is about 1000 Hz - DAQ with slow readout sequence (readout full matrix 64x128) accepts 180-220 Hz depending on number of readout PCs. - Data volume rate for 6 modules is about 20 GB / hour - One disk of 500GB is filled in 1-2 days - Hot swapping RAID system allows to change the disks without stopping taking data ## Initial alignment of TB setup - Online Monitor also is used for alignment of all 6 modules on the beam line: - → 6 sensors with size of 2x3 mm and distance between modules about 20 cm Correlation plots for two modules: Mod8 & Mod5 ## Analysis - Data analysis has been carried out and cross-checked by several groups, each using different tools: - → Framework (ILC/EUTelescope vs. ROOT) - → Alignment (Millepede vs. alignment) - The analysis groups collectively cover a wide range of specialized analysis tasks (from charge collection homogeneity analyses to studies of response variations across detector matrices to calculation of detector resolutions - Detector (spatial) resolutions (Prague) - → calculated from fit residuals by "subtracting" multiple scattering contribution using the statistical models of particle track and multiple scattering. - Useful tool to study and optimize detector properties (hit reconstruction, homogeneity of response etc.) - Simulation studies and digitization: - → For validation of analysis - → For studies of detector designs for HEP experiments (Belle II, ILC) ### ILC data analysis software - Data analysis is based on ILC framework software for tracking and alignment with modification for DEPFET specifics mainly in part - of cluster reconstruction - common mode correction. - LCIO (LiniarCollider I/O): persistency framework and data model - MARLIN: C++ application framework - · GEAR: geometry description - · RAIDA: interface to ROOT - Advantages: - use standard analysis tools and reconstruction software - → space for own development - integrate with GRID for data management and processing ## ILC/EUTelescope software - LCIO (LiniarCollider I/O): persistency framework and data model that has been adopted as a standard by the international ILC community. - •MARLIN:C++ application framework - •GEAR: geometry description - ◆RAIDA: interface to ROOT - ·Eutelescope: applications for TestBeam #### Advantages of the ILC software: - →standard analysis tools and reconstruction software - ⇒space for own development - →integrated with GRID for data management and processing ## Milepede II alignment ### Before alignment (track-hitX) (track-hitY) ### After alignment (track -hitX) (track-hitY) ### Cluster signal and noise • The most probable signal ranges from 1600 to over 3000 ADU in different sensor designs. #### Telescope Module COCGLB: S/N ~130 #### Module COCG VS (20x20 µm): S/N ~220 - The noise level in these devices is approximately 13 to 14 ADU. - → signal-to-noise ratio of well over 100. - → S/N for COCG VS over 200 #### Pedestal and noise distributions ## Preliminary TB 2009 analysis Residuals Y ## Analysis of the DEPFET data at University of Göttingen, using ILC/EUDET software #### Residuals X Residuals in \times and y of H3.0.04, H3.0.07 and H3.0.01. Telescope and DUT hits reconstructed with eta px couple algorithm. The matrix chart displays the residuals for x (red) and y (green) in dependence of the clustering procedure and the hit reconstruction algorithm in μm . FF = Full Frame; NR2.6 = Noise Reject at 2.6 Sigma ### Final TB 2008 resolution #### Geometry of the 2008 beam test. Final residuals and resolutions from Prague analysis | I mai restaudis and resolutions from rraque analysis | | | | | | | |--|---------------|--------------------------------|--------------------------------|---------------|---------------|--------------------------------| | | Module 0 | Module 1 | Module 2 | Module 3 | Module 4 | Module 5 | | | CCGME- | CCGME- | SIMCME- | CCGME- | CCGME- | CCGME- | | Y resolution $[\mu m]$ | -S90K02 | -90K02 | -S90K00 | -S90I03 | -S90I00 | -90I00 | | | $32x24 \mu m$ | $32\mathrm{x}24~\mu\mathrm{m}$ | $32\mathrm{x}24~\mu\mathrm{m}$ | $24x24 \mu m$ | $32x24 \mu m$ | $32\mathrm{x}24~\mu\mathrm{m}$ | | X residual $[\mu m]$ | 2.9 | 2.2 | 2.3 | 2.0 | 3.1 | 3.4 | | Y residual $[\mu m]$ | 2.3 | 1.7 | 1.7 | 1.7 | 2.2 | 2.6 | | X resolution $[\mu m]$ | 2.1 | 1.6 | 1.9 | 1.3 | 2.6 | 2.4 | | Y resolution $[\mu m]$ | 1.5 | 1.3 | 1.2 | 1.2 | 1.8 | 1.7 | ### New Readout of DEPFET - a A(0:255) - b analog AVDD, AGND, AmpLow, Refln (+4xrefCurr) digital DVDD, DGND - c DCD->DHP DO(0:63), RefOutDHP->DCD DI(0:15)DCD->DHP CLK, SYNC_RES, STRSYNCHR(0:1) - d JTAG5x - e HV AHI, ALO, BHI, BLO, SUB, Ref? LV VDDD3.3, GNDD, VDDJTAG1.8 - f CLK, SERIN, SEROUT STRGATE, STRCLR - g CLR(0:31), GATE(0:31) - h VDDDC_DHP, GNDD_DHP, VDDGB_DHP, VDD1.8_DHP, - i IO DHP - j S, CG, PC, GU, HV - k Monitor_DCD, MonA_SW, MonB_SW ### Conclusion - A system for characterization of DEPFET matrices includes: - → Laser and radioactive sources setups at Laboratory - → Test Beam setups (CERN, DESY) - Standalone DEPFET telescope - Integration with EUDET telescope on the hardware and software level - Data acquisition system is running stable and has shown good performance - → Operated 6 layers DEPFET telescope (trigger rate ~100 Hz, data rate ~20 GB/hour) - → Collected ~ 20 millions events for analysis (~4TB raw data) - → Flexibility: DEPFET DAQ has been successfully integrated to EUDET readout system - Analysis Software - → Several analysis tools from a different groups are available to cross check the results. - → ILC/EUTelescope software is used as default for data analysis. - The spatial resolution in TB2008 for matrix with $24 \times 24 \mu m^2$ pixels is found to be: $$\sigma_x = 1.3 \pm 0.2 \ \mu m$$, $\sigma_y = 1.2 \pm 0.1 \ \mu m$ - Signal to noise ratio for DEPFET telescope planes ~130, DUT module S/N ~220 - The future test system with DCD readout is also planned to use this environment # Backup Slides ## Prototype of the new R/O system - The new prototype of ReadOut system consists of 2 PCBs: - → **Hybrid PCB** houses DEPFET, Steering and Readout chips - → Readout PCB FPGA, RAM, USB - prototype of DCD2 chip is available (reduced number of connections) and tested on slow readout system - DAQ for the fast readout system is based on existing USB 2.0 interface ### DEPFET with EUDET Telescope **EUDET** project is a program to develop the infrastructure, to facilitate the experimentation and to enable the analysis of data using shared equipment and common tools. JRA1- test beam infrastructure (EUDET Telescope) - 6 EUDET Modules MAPS Monolithic active pixel sensors : - $-7.7x7.7 \text{ mm}^2$ - **→** 256x256 pixels - → pitch 30x30 µm² - MVME6100 PowerPC computer with general purpose acquisition boards (EUDRB) inside the VME64x crate connected to 1GB ethernet HUB - EUDET DAQ server on MAC PC, 1GB Ethernet - Trigger Logic Unit (TLU) - DEPFET DUT with Readout PC - About 2 million events collected ## DEPFET DUT is steered by the EUDET DAQ software **EUDET Run Control**DEPFET Run Control ## DEPFET sidewards depletion ## DEPFET double pixel cell ### DEPFET readout sequence ### The in-pixel gain • The most probable signal is used to determine g_q : $$g_q(nA/e-) = \frac{\mu \times 7.7(nA/ADC)}{E_{MPV}(keV)/3.6(e^-/keV)}$$ - Where: - μ is the most probable value in ADU: - The 7.7 nA/ADC corresponds to the measured gain of the CURO/S3B system - ightharpoonup is the most probable energy deposition in 450 μm of silicon by 120 GeV pions: - EMPV = 131 keV (or equivalently 36.400 e-) #### The in-pixel gain of different DEPFET prototypes | sensor type, matrix & pixel size | | | results | | | |----------------------------------|---------------------|----------------|---------------|--------------|--| | name | $row \times column$ | (μm^2) | $g_q(pA/e^-)$ | noise | | | telescope TB2008 | 128×64 | 32×24 | 320 ± 20 | 320 ± 20 | | | DUT 2008 | 128×64 | 24×24 | 360 | 284 | | | telescope TB2009 | 128×128 | 32×24 | 394 ± 14 | 290 ± 2 | | | DUT CCCG | 128×128 | 32×24 | 507 | 225 | | | DUT short gate | 128×128 | 20×20 | 655 | 174 | | ## Operation voltages of DEPFET - Power consumption of a DEPFET matrix - Due to the row wise addressing the power consumption does not depend on the number of rows but only on the number of columns. - The factor 2 takes into account the splitting of the matrix into two readout directions $$P = 2 * I_d * V_d * n_{ad} = 2 * 100 \mu A * 5V * 64 = 64 mW$$ • The power necessary to ramp up and down the gate and clear lines is mainly consumed in the Switchers | Operation | voltages of | a DEPEET | matrix with | respect to se | ource (OV) | |-----------|-------------|------------|-------------|---------------|------------| | Operation | voilages of | u DLI I'LI | man a win | respect to si | Juice (OV) | | | Collection | Read | Clear | | | |------------------|------------|------|-------|--|--| | V_{Gate}^* | 3V | -2V | -2V | | | | V_{Clear}^* | 2V | 2V | 15V | | | | V_{Drain}^{**} | -5V | | | | | | $V_{ClearGate}$ | -2V | | | | | | V_{Bulk} | 10V | | | | | | V_{Back}^{***} | -10V50V | | | | | - * * control lines (transferred via Switcher) - ** provided by readout input stage - ★★★ depending on final detector thickness and contact mode ## Network DAQ, logic view