Study of 144-channel Hybrid **Avalanche Photo-Detector** for Belle II RICH Counter VCI2010 Susumu Shiizuka Nagoya University for Belle II Aerogel RICH group Belle ff

Contents

- Introduction
- Development of new 144ch HAPD + ASIC
- Performance in magnetic field
- Neutron irradiation test
- Beam test of Aerogel RICH with HAPD
- Summary

Belle II Aerogel RICH

We are developing a proximity focusing Ring Imaging Cherenkov (RICH) counter with aerogel radiator for the upgrade of the forward endcap PID in the Belle II detector.

To achieve 4 σ K/ π separation, we need a brand new photodetector with,

(1)Large effective area (2) High sensitivity to single photon
(3)Position resolution(5×5mm²) (4)Immunity to magnetic field(1.5Tesla)
(5) Immunity to radiation

2/18/2010

New 144ch multi-pixel HAPD

We have been developing

a new 144ch Hybrid Avalanche Photo Detector (HAPD)

with Hamamatsu Photonics since 2002.

Single photon response

The 144ch HAPD has excellent single photon detection performance

Quantum efficiency We are developing HAPD with super bialkali photo cathode to

detect more photops.

We achieved Peak QE ~32%. (bialkali average : 25%)

ASIC for readout of 144ch HAPD

- We need high density front-end electronics including high-gain and low-noise amplifier for A-RICH.
- → We have been developing ASICs for front-end electronics.
 We planed to readout output of ASIC with FPGA.

Circuit configuration

VCI2010 shiizuka

- •4 step variable gain preamplifier.
- •4 step variable shaping time shaper.
- •Comparator for the digitization of analog-signals.
- (We need only on/off hit information)

•We have developed new ASIC SA01 and SA02.

Readout test of HAPD with ASIC

Threshold scan

 Distribution of output ASIC for 100 LED light irradiations at each threshold voltage.

Test in magnetic field

We measured HAPD in the 1.5T magnetic field
using a special equipment to scan the HAPD surface with pulse laser(controlled by a 2D stage outside the magnet).

9

Effect of magnetic field In magnetic field, we expect improved performance.

We confirm these behaviors in the magnetic field of 1.5T

Image distortion effect

• As expected, the distortion near the side wall is removed in the magnetic field of 1.5T.

We have achieved 5mm position resolution all over the HAPD surface in 1.5T.

2/18/2010

VCI2010 shiizuka

Photoelectron Backscattering Effect

We confirm reduction of photoelectron backscattering effect.

Residual effect is due to reflection of light on the AD surface.

Performance of HAPD

- Large effective area.
- High sensitivity to single photon
- High quantum efficience
- Position esolution (5×5mm²)
- Immunity or agnetic field

Neutron irradiation test

- Concern influence on APD (lattice defects)
- •Estimated neutron dose = 1x10¹² neutron/cm²
 - for 10 years in Belle II detector
- •We carried out neutron irradiation test in October 2009.
 - •Used nuclear reactor "Yayoi", Tokyo university
 - •Flux : 2x10⁸ neutron/cm² sec

 $\frac{1}{2}$ 10^{-1} 10^{0} 10^{1} 10^{2}

- •Source size : φ=100mm
- Neutron energy spectrum

Neutron energy (MeV)

Jaqunu 4

entron 10²

- •0.5x10¹¹ neutron/cm² (Belle II 0.5 years)
- 1x10¹¹ neutron/cm² (1 years)
- 2x10¹¹ neutron/cm² (2 years)
- 5x10¹¹ neutron/cm² (5 years)

VCI2010 shiizuka

Influence of irradiation

Single photon response after irradiation Measured S/N ratio by using the ASIC (S/N Target>7)

We can achieve S/N = 7 by optimizing the shaping time and HV We can use the HAPD for 5 years in Belle II detector. (Irradiation test up to 1×10^{12} neutron/cm² is underway.) 2/18/2010

Beam test of Aerogel RICH with HAPD

- At Fuji test beam line in KEK November 2009.
- Electron beam with 2 GeV/c
- 6 HAPDs from recent batches
- Aerogel with improved transmission

Track parameters determined by two MWPCs

2/18/2010

Ring image

See poster:M.Tabata "Status of Aerogel Radiator with High Refractive Indices" ID:263

Beam test result

Angler resolution= σ_0 13.5mrad Number of photons/track=Npe 15.3p.e. Angle resolution/track= σ_{θ} 3.5mrad $\sigma_{\theta} = \frac{\sigma_0}{\sqrt{Npe}}$ K/π separation performance 📥 **6.6 σ** at 4GeV/c $S = \frac{\theta_{\pi} - \theta_{K}}{1 - \theta_{K}}$ σθ **Aerogel RICH with HAPD has**

excellent K/ π separation.

Summary

- We have developed a new 144ch multi-pixel HAPD
 - + ASIC for the Belle II Aerogel-RICH
- The HAPD has
 - Good single photon sensitivity
 - High quantum efficiency(\sim 30%)
 - Position resolution (5x5mm²)
 - Immunity to magnetic field(1.5T)
- Neutron radiation damage is controllable(5x10¹¹).
- We have achieved Npe=15 σ_0 =13.5mrad with HAPD.

We have selected the new HAPD as the baseline photodetector for the Belle II Aerogel-RICH.

2/18/2010

Thank You!

Back Up

Aging tests

•comparison of initial Photon Detection Efficiency(PDE) and PDE after light irradiation(8years) show practically no change in performance

Improvement of leak current

Structure of APD

For n⁻ layer, Effect of holes making electron-hole pairs in the depletion layer is less than 1%, compare to electrons.

- Avalanche amplification region

Leak current from P layer contribute to increasing noise.
We need reducing the thickness of P layer to decrease leak current.

Using thin APD reduce leak current.

Surface scan

The HAPD response to surface scan shows the clear pixel shape and proves the good position detection performance.

Beam test with irradiated HAPDs

Reference

Irradiated HAPDs

We could detect ring image with 2 x 10¹¹ neutron/cm² irradiated HAPD.

Alignment of Aerogel RICH

ADC distribution

Deterioration of sensitivity to single photon by irradiation damage