PICASSO

A Detector for Phase-Contrast Mammography with Synchrotron Radiation

L.Rigon,^a F.Arfelli,^{a,b} A.Bergamaschi,^c R.C.Chen, ^{a,b,d} D.Dreossi,^{a,e} R.Longo,^{a,b} R.-H.Menk,^{a,e} B.Schmitt,^c E.Vallazza,^a and E.Castelli^{a,b}

^{a)} INFN, Trieste, Italy

- b) Physics Department, University of Trieste, Italy
 - c) Paul Scherrer Institut, Villigen, Switzerland
- d) Shanghai Institute of Applied Physics, CAS, Shanghai, China
 - e) Sincrotrone Trieste SCpA, Italy

Outline

- Mammography with Synchrotron Radiation
 - The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline
 - The mammography clinical program
- The PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiation) detector
 - Geometrical characteristics
 - Single photon counting capabilities
 - Imaging results: planar and tomographic imaging
- Conclusions

Outline

- Mammography with Synchrotron Radiation
 - The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline
 - The mammography clinical program
- The PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiation) detector
 - Geometrical characteristics
 - Single photon counting capabilities
 - Imaging results: planar and tomographic imaging
- Conclusions

Characteristics of synchrotron radiation (SR)

- High x-ray intensity on a broad energy range
 - Tunable monochromatic beam
 - Choose the optimum energy for a specific examination
 - Dose optimization/reduction
 - No beam hardening effects (in tomography)
- Laminar beam geometry (the beam is naturally collimated)
 - Images are acquired by scanning the object/patient through the fan beam
 - High scattering rejection
- Small source size and large source-to-sample distance
 - High degree of lateral coherence
 - Phase-sensitive techniques

Phase Contrast (PhC)

Synchrotronor

x-raytube

- Phase effects → Modulation of X-ray intensity on the detector
- PhC is the simplest way
 - In line propagation
 - Edge enhancement $(\nabla^2 \Phi(x,y))$

absorption

phase contrast

ANGLE(rad)

Diffraction Enhanced Imaging

- A.k.a. Analyzer-based Imaging
 - Edge enhancement $(\nabla \Phi(x,y))$
 - Can give images based on different physical effects

ultra-small angle scattering

Monochromator

Sample

absorption and extinction

The SYRMEP beamline (I)

- Source size ~ 1.1 (horizontal) x 0.1 (vertical) mm²
- Divergence: ~ 7 mrad (horizontal) x 0.2 mrad (vertical)
- Laminar beam cross section: 4 x 150 mm²

- 4 x 210 mm²
- Flux available at 17 keV (Elettra operated at 2.4 GeV, 140 mA ring current):
 - 6 10⁸ ph/mm²/s

2 10⁸ ph/mm²/s

Patient support

- Prone position as used in stereotactic biopsy tables
 - Full Field Digital Biopsy system Giotto Image (IMS, Bologna, Italy)

- Size and shape of the opening are consistent with the chest anatomy
 - Good patient comfort

Patient support (II)

Mammography with SR: clinical program

- Our goal
 - Improving the diagnostic quality of conventional mammography without increasing the dose delivered to the patient
- 3 Phase program
 - Phase I: Phase contrast MSR with screen-film system
 - Completed with 71 patients (2006-2009)
 - Encouraging results: MSR outperforms conventional mammography
 - Phase II: Phase contrast MSR with digital detector
 - Feasibility study by using FUJIFILM Fuji CR for Mammography PROFECT ONE
 - Development of our custom digital detector (PICASSO)
 - Phase III: new techniques (CT and/or tomosyntesis)

MSR: Clinical Program Preliminary Results (I)

- Data from the first 49 patients have been considered
- A comparison with conventional mammography is performed
 - The conventional system is a state-of-the-art
 Digital Mammography (DM) GE Senographe DS
 - An expert Radiologist compared MSR and DM images and evaluated them in terms of
 - Visibility of the lesion
 - Visibility of the glandular structure relevant to the diagnosis
 - In both cases the score ranged in a scale from 1 to 7, where
 - 7 excellent visualization with MSR and poor visualization with DM
 - 4 equal visualization for both modalities
 - 1 excellent visualization with DM and poor visualization with MSR

MSR: Clinical Program Preliminary Results (II)

- The histogram shows that MSR allows a better visualization, both for the lesions and for the glandular structure
- A Wilcoxon signed rank test rejects the null hypothesis of equal visualization
 - P < 0.00001both or lesions and for glandular structure

Conventional (DM) Vs Synchrotron (MSR)

Conventional (DM) Vs Synchrotron (MSR)

Dreossi, D. et al., Eur. J. Radiol. 68 S58 (2008)

Outline

- Mammography with Synchrotron Radiation
 - The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline
 - The mammography clinical program
- The PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiation) detector
 - Geometrical characteristics
 - Single photon counting capabilities
 - Imaging results: planar and tomographic imaging
- Conclusions

PICASSO Digital Detector Requirements

- Laminar geometry
 - Matching beam cross section
 - Scatter Rejection
- High efficiency
 - Low dose
- High spatial/contrast resolution
 - Detect micro-calcifications/nodules
 - Detect PhC effects
- Wide dynamic range
- Fast Rate Capabilities and Read-Out
 - Take a mammogram in a few seconds

The silicon micro-strip detector: "edge-on" geometry 18

- Advantages of "edge-on" geometry:
 - Matching the laminar geometry of the beam with a natural pixel array
 - High absorption efficiency

Problems:

 Dead (undepleted) volume in front of the sensitive region that reduces the detection efficiency (~70-85% @ 20keV)

Single Photon Counting

- Mythen-II ASIC developed by PSI detector group
- Widely used in "face-on" powder diffraction detectors and other applications
 - SLS, Australian Synch, DESY, Diamond, Spring-8
- Characteristics:
 - 0.25 µm UMC technology
 - 128 channels
 - 50 µm pitch
 - 24-bit counter
 - 6-bit threshold trim DAC to obtain uniform response over all channels
 - Single photon counting at 1 MHz

Bergamaschi, A. et al., Nucl. Instrum. Meth. A , 2009. 604. 1-2. 136-Mozzanica, A. et al., Nucl. Instrum. Meth. A , 2009. 607. 1. 250-252

The PICASSO detector assembly

- A 4-layer detector to successfully exploit the beam size
- Tight requirements
 - coverage of the beam width (210 mm)
 - silicon detector planarity about 10-20 μm
 - very small spacing between layers
- Our solution
 - modular design
 - displacement of the modules along the beam propagation direction

Vallazza, E. et al. Proceedings of 10th ICATPP Conference, 700-705 World Scientific Publishing Co. Rigon, L. et al. IEEE Nuclear Science Symposium Conference, 2008, 1536

Modular design

Single layer full size prototype

- Single layer 210 mm silicon detector
 - Use of two modules (120 mm+90 mm), 33 ASICs (4224 channels)
 - PCB hosts 3 Altera Cyclone-II FPGA for ASIC control
 - Assembled and bonded at Mipot SpA (Cormons, Italy)

Double layer prototype

- Double layer 210 mm silicon detector
 - Detectors glued to the glass bar and fixed in the aluminum frame
 - Assembly system developed by the mechanical workshop of INFN
 - Tested at the SYRMEP beamline

PICASSO Counting Rate Capabilities

- Compatible with a paralyzable model with
 - Efficiency 65.1 % (compatible with \sim 200 μ m dead zone)
 - Dead Time 0.16 μs
- Almost negligible losses (< 10%) up to 1.2 MHz

ACR (American College of Radiology) Phantom

19 keV
Scanning step
50 µm
0.2 s per step
Air Entrance dose
8.5 mGy

Gammex RMI 160 "Ackermann" Phantom detail

- Phantom + 30 mm Plexiglas acquired at 19.5 keV
 - Scanning step 100 μm, 0.100 s per step
 - Air Entrance dose 1.75 mGy

Top layer Raw image Bottom layer Raw image Summed and normalized image

Summed and normalized image

In vitro breast tumor tissue

Agfa Image Plate mammographic system

PICASSO single layer detector

Ro/Ro Anode/Filter
7 mAs, 28 kVp
Air entrance dose ~ 0.6 mGy

Energy 23 keV Scanning step 200 μ m Exposure time 80 ms/step Air entrance dose \sim 0.4 mGy

Custom-made PhC-Tomography Breast Phantom

- Shape: to mimic uncompressed breast
 - Diameter: 8-12 cm
- Composition
 - Glycerol (same attenuation as glandular tissue)
 - 3 Delrin rods (same attenuation as breast-tumor tissue)
 - Quartz microspheres
 (diameter 100-800 μm)
 to mimic microcalcifications

90 projections

Pixel aperture: 100 µm

Air entrance Dose: 57.6 mGy

Custom-made PhC-Tomography Breast Phantom

Breast Tissue DEI Tomography

Breast Tissue Tomography

- Characterization and accurate measure of linear attenuation coefficient of breast tissue
 - Slice reconstructed from 2400 projections on 180° (angular step 0.075°)
 - Energy 23 keV
 - Exposure time 1s per projection
 - High dose

Chen, R. C. et al. manuscript in preparation

Outline

- Mammography with Synchrotron Radiation
 - The SYRMEP (SYnchrotron Radiation for MEdical Physics) beamline
 - The mammography clinical program
- The PICASSO (Phase Imaging for Clinical Application with Silicon detector and Synchrotron radiation) detector
 - Geometrical characteristics
 - Single photon counting capabilities
 - Imaging results
- Conclusions

Concluding Remarks

- The SYRMEP group is operating a beamline dedicated to in-vivo mammography at ELETTRA
- The first clinical mammography project provided excellent results
 - 71 patients have been examined by using a conventional screen-film system
 - evidence that MSR outperforms DM in visualizing lesions and glandular tissue
- The PICASSO collaboration has developed a silicon microstrip detector.
 Phantom and *in-vitro* studies have shown:
 - High efficiency
 - Remarkable spatial and contrast resolution
 - Single photon counting capability up to ~1 MHz
 - Excellent uniformity over ~ 2 x 4200 channels counting simultaneously
- These characteristics make PICASSO a unique tool for medical imaging and pave the way for its utilization in the next clinical trial

References

- F. Arfelli et al., Radiology 215 286 (2000)
- S. Pani et al., Phys. Med. Biol. **49** 1739 (2004)
- A. Abrami et al., Nucl. Instrum. Meth. A **548** 221 (2005)
- E. Castelli et al., Nucl. Instrum. Meth. A **572** 237 (2007)
- D. Dreossi et al., Nucl. Instrum. Meth. A **576** (2007)
- D. Dreossi et al., Eur. J. Radiol. **68** S58 (2008)
- A. Bergamaschi et al., Nucl. Instrum. Meth. A 604 136 (2009)
- A. Mozzanica et al., Nucl. Instrum. Meth. A **607** 250 (2009)
- E. Vallazza et al., Proc. of 10th ICATPP Conference, World Scientific Publishing 700 (2008)
- L. Rigon et al., IEEE Nuclear Science Symposium Conference 1536 (2008)
- L. Rigon et al., Nucl. Instrum. Meth. A **608** S62-S65 (2009)

The SYRMEP beamline (II)

- 1 Beam preparation (energy, flux, geometry)
- 2 Beam monitoring (dose, exposure time, safety system)
- 3 Patient exposure

Dose control and safety system

A decade of single photon counting

	ASIC	Channels per ASIC [total]	Pitch µm	Pixel Size µm x µm h x v	Gain mV/fC	Noise e- RMS	Max Rate MHz
SYRMEP	CASTOR (Lepsi)	32 [764]	200	200 x 300	200	250	0.01
FRONTRAD	FROST (Caen)	64 [64]	200	100 x 300	130	800	0.1
MATISSE	VA64_TAP +LS64 (Ideas)	64 [64]	100	100 x 300	100	500	1
PICASSO	Mythen II (PSI)	128 [8448]	50	50 x 300	110	240	1

Threshold scan

Pencil beam 10 µm wide to avoid charge sharing effects

Read-out Electronics

- Very simple readout
- Already designed an improved version of the VME I/O with an ALTERA Cyclone II FPGA and local memory to buffer the frames during the scan

Read-out Electronics (II)

