THE 12th VIENNA CONFERENCE ON INSTRUMENTATION FEB 15-20, 2010

Enhancement of hadron electron discrimination in calorimeters by detection of the neutron component.

NEUCAL Experiment:

- O. Adriani^{1,2}, L. Bonechi^{1,2}, M. Bongi², S. Bottai², M. Calamai^{1,2}, G. Castellini³, R. D'Alessandro^{1,2}, M. Grandi², P. Papini², S.Ricciarini², G.Sguazzoni², G. Sorichetti¹.
 - 1) University of Florence
 - 2) INFN Section of Florence
 - 3) IFAC CNR, Florence

Introduction

- Motivations
- Simulations
- First prototype
- Simulations
- Test beams
- Some results

- Astroparticle physics
- Fluka Geant 4
- Fast scintillators
- ³He tubes
- Pions, electrons
- Neutrons

Astroparticle physics

- Discrimination between protons and electrons/positrons is extremely important.
- Recent results, like the positron spectra measured by the PAMELA collaboration, attest to this fact.
- Adriani et al., Nature 458, 607-609 (2 April 2009)

- The calorimeter is the main detector used for this task.
- Best results are obtained with long depths and high granularities.
- This is not always
 possible, i.e. on a space
 based experiment.

Electron-Hadron discrimination. Pamela detector

• 18 GeV electron

36 GeV proton

Problems with the calorimetric approach.

- In shallow calorimeters (circa $0.6 \lambda_I$) of the type used in the PAMELA detector, interacting protons can be tagged as electrons.
- Very extensive leakage.
- Similar shower development to electrons.
- Complementary detectors, do not provide a smoking gun solution, (trackers, TRD, Cherenkov).

Fig. 4. An illustration of electron-proton separation using a simple total deposited energy variable. The test beam data were collected for particles of momentum 50 GeV/c. After a cut placed at 7300 mip 14 protons (99.98% reduction) and 3197 electrons (4.3% reduction) remain.

Boezio et al., Astroparticle Physics 26 (2006) 111–118

High energy protons

- Easy case
- Late interaction
- Easily identified
- File: protons.root Pkt_num: 9839240
 Progressive number: 1607 S4 trigger On Board Time: 508135873 [ms]
 TRIGGER: TOPI CALO
 AC: CARD bit = 0 CAT bit = 0
 TRk: RIC = 230 [GV] CILI2 = 0.742
 CALO: NSTRIP = 81 GTOT = 5192 [MIP]
 St. 530 [MIP] TOP: [9 = 1.03
 ND: Trig: 5 Backgr: support = 4 lower = 3

 ND: Trig: 5 Backgr: support = 4 lower = 3

 **SETTING GRAD MANUPLE **
 **SETTING G

- Problematic case
- Interacts within the first 3 layers.
- Could be misidentified.

Neutron detection

- Neutron production:
 - Protons: nuclear excitation, hadronic interaction and Giant Resonance mechanism
 - Electrons: only through Giant Resonance
- Expect different yields for e.m. or hadronic showers.
- PAMELA uses a neutron counter as the final stage of the apparatus (after the calorimeter)
- Standard detector:
 - Moderation of neutrons by means of passive moderator (polyethylene layers)
 - ³He proportional tubes react with thermal neutrons and detect signals given by the ionization products inside the gas
 - $-n + {}^{3}He --> {}^{3}H + p (Q = 0.764 MeV)$

Simulations

- BGO electromagnetic calorimeter simulation
 - CALET proposal for the space station
 - Circa 35 rad. lengths
 - 400 GeV electrons
 - 1 TeV protons

 Roughly same energy deposit in TASC (when interaction takes place in IMC)

Simulations

• 1 TeV protons (Fluka)

• 400 GeV electrons (Fluka)

release the same energy as

Shower components

• 1 TeV proton

• 400 GeV electron

Simulations

- Well developed hadronic showers (interaction in the first layers)
- Many more neutrons released
- Harder spectra than with electromagnetic showers
- Very strong correlation between arrival time and energy.

1 TeV proton showers

NEUCAL

- Almost all neutrons exit from the calorimeter within a few microseconds, but thermalization inside the neutron detector can take hundreds microseconds
- Sensitivity also to energetic neutrons.
- Detect neutron signals during moderation by using

standard organic scintillators.

- Fast photomultiplier readout.
- Complement with ³He tubes.

Energia	σ_{tot}^{H}	σ^{C}_{tot}	ℓ_{Antr}	ℓ_{Stil}	ℓ_{EJ-230}	ℓ_{NE-213}
$[\mathrm{MeV}]$	[barn]	[barn]	[cm]	[cm]	[cm]	[cm]
0.1	13	4.4	1.2	1.4	1.1	1.2
1	4.2	2.6	2.9	3.6	2.9	3.2
10	0.93	1.2	8.8	11	9.6	11
100	0.075	0.47	32	41	39	45

Number of layers.

- For low energy (100 KeV) neutrons 2-3 layers are sufficient.
- At 10-100 MeV efficiency drops and more layers are needed.

• At least 1 hit required.

Dimensions

- From simulations:
- neutrons from the showers interact mostly within a radius of 20 cm from the shower centre.
- there is a lot of straggling and depending on the energy little or no interaction

Lead foils

- KLOE calorimeter study.
- Simulations show a modest gain for high energy neutrons.
- Left as an option the possibility of inserting a
 .5 mm sheet.

Detector

- Scintillator plates
- ³He tubes

• Photomultipliers, very fast.

Slow high gain electronics

Simple build

A lot of borrowing

PMT Hamamatsu R5946

Optical grease: Saint Gobain BC-630

A detection module

³He proportional counter tube: Canberra 12NH25/1

1 cm diameter

Readout electronics

CAEN V1731 / V1720 board

- VME standard
- 8 ch, 500MS/s, 250MS/s
- 8, 12 bit ADC
- 2MB/ch memory (few ms digitization)
- 16, 32 ns jitter
- On-board data compression (Zero Suppression Encoding)

- The idea is to capture a long "time exposure" of the detector after the trigger.
- Looking for neutron signals for up to a millisecond after the shower has ended.

Test beam SPS

Shallow calorimeter

scenario. 16X₀.

• Tungsten, fibres.

- Parasitic
- Separate readout

Test beam conditions

- CERN SPS, line H4 (one week test)
- Beam type energy # of events:

```
    Pions 350 GeV (230000 events)
    electrons 100 GeV (240000 events)
    electrons 150 GeV (50000 events)
    muons 150 GeV (130000 events)
```

- Data collected in different configurations:
 - scan of detector (beam impact point)
 - different working parameters
 - PMTs and tubes voltages
 - Digitizer boards parameters (thresholds, data compression...)
 - 16 X_0 for electrons, 29 X_0 with pions VCI2010, R.D'Alessandro

- Expect single pulses coming after the main shower core has passed.
- After the trigger, a prompt signal appears on all scintillators, the result of the showering process.
- As the film unrolls other signals may show up. Traversing hadrons will give a visible signal on more than one scintillator (2-4 ns resolution of the system comes into play).
- A single isolated pulse is considered as a neutron candidate.

Caveats

- NEED to operate in zero suppression mode!
 - Huge data frame otherwise
 - Enormous read-out time (seconds !)
- Due to a firmware bug, our fast signals were not recognised even though below threshold.
- Ad hoc solution using passive filters to "slow" the signals.
 - Reflections introduced
 - Took a small sample of data without zero suppression (without filters).

Muon example
 9 scintillator views, 2 trigger views, 5 ³He views.

• 9 scintillator views, 2 trigger views, 5 ³He views.

Pion example

• 9 scintillator views, 2 trigger views, 5 ³He views.

Pion example

• 9 scintillator views, 2 trigger views, 5 ³He views.

Geant 4 simulation of test beam set up

- Calorimeters simulated as passive absorber blocks.
- Energy calibration from muons
- Reflections, spurious signals (high intensity spill).

Comparison (Data after 1 µs!)

Comparison (2)

Before 1 µs?

- Cannot use zero suppressed data sets because of reflection problems.
- Very little data without filters.
- Saturation problems.
- 8 bit ADCs

All is not lost

- Two scintillator blocks were read out by a slower 12 bit ADC.
- They are not in the immediate path of the shower.
- Some signals have been extracted using procedures similar to the ones outlined before.

Again a significant difference

There are more "single" signals for pions than electrons.

Response to neutrons

- Had the opportunity to sit on the nTOF beam in November.
- We placed our detector at the end of the beam line and collected data.
- The analysis has still to start.

- Very intense p beam (20 GeV, 10¹² p per spill)
- ...But with very short spill (5 ns)
- ...And very small duty cycle (5 ns/few ms)
- Neutrons are produced in the target with different energies
- Neutrons travel along the 200 m line
- The energy of the neutron is inferred from the arrival time on the Neucal detector

- By knowing the neutron spectrum (both in shape and absolute normalization) we can measure the single neutron efficiency as function of the neutron energy
- Analysis is complex.

Conclusions

- A new approach to hadron/electron separation is being pursued.
- Advantages are the possibility of achieving the same performance with lighter more compact calorimeters
- Results are very encouraging, and entice us to repeat the tests with more adequate electronics and with better calorimeter control.
- We thank the nTOF collaboration for their support and especially Marco Calviani who will collaborate with us on the analysis of the nTOF data.

Backup 1

Backup 2

• Simulated energy release inside one scintillator layer

- Fluka, Geant4 comparison.
- 1 MeV neutrons

10 MeV neutrons

Backup 3

- 100k single 1MeV neutron events.
- Look for late produced (t>100ns) particles with Ekin>10keV.
- Two categories: soft Ekin<3MeV, hard Ekin>3MeV.
- particles originating in the active 3He counters volume ignored.

	Note	particle	number	per 1k N	process	material
SOFT <3MeV	Charged [not due to photons: no compton, no conversions, no photoelectric]	р	62	0.62	NeutronInelastic	Air
		¹⁴ C	28	0.28	Neutroninelastic	Air
		¹⁶ O	4	0.04	hElastic	Air
		¹⁴ N	2	0.02	HEIASUC	Air
	Neutrals [no eBrems, no annihil]	gamma	5441	54.41	nCapture	Scintillator
			531	5.31		Al
			135	1.35		NiCu
			1	0.01		Air
HARD >3MeV	Neutrals [no eBrems, no annihil]	gamma	377	3.77		Al
			103	1.03		NiCu
			74	0.74		Scintillator
			5	0.05		Air