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Introduction

● Motivations
● Simulations
● First prototype
● Simulations
● Test beams
● Some results

● Astroparticle physics
● Fluka - Geant 4
● Fast scintillators
●  3He tubes
● Pions, electrons
● Neutrons
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Astroparticle physics

● Discrimination between 
protons and 
electrons/positrons is 
extremely important.

● Recent results, like the 
positron spectra measured 
by the PAMELA  
collaboration, attest to 
this fact.

● Adriani et al., Nature 458, 607-609 (2 April 2009) 

● The calorimeter is the 
main detector used for 
this task.

● Best results are 
obtained with long 
depths and high 
granularities.

● This is not always 
possible, i.e. on a space 
based experiment.
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Electron-Hadron discrimination. 
Pamela detector

● 18 GeV electron ● 36 GeV proton
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Problems with the calorimetric 
approach.

● In shallow calorimeters (circa 0.6 λI) 
of the type used in the PAMELA 
detector, interacting protons  can be 
tagged as electrons. 

● Very extensive leakage.
● Similar shower development  to 

electrons.
● Complementary detectors, do not 

provide a smoking gun solution, 
(trackers, TRD, Cherenkov). 

Boezio et al., Astroparticle Physics 26 (2006) 111–118
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High energy protons

● Easy case
● Late interaction
● Easily identified

● Problematic case
● Interacts within the first 3 

layers.
● Could be misidentified.
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● Neutron production:
– Protons: nuclear excitation, hadronic interaction and Giant 

Resonance mechanism
– Electrons: only through Giant Resonance 

● Expect different yields for e.m. or hadronic showers.
● PAMELA uses a neutron counter as the final stage of the 

apparatus (after the calorimeter)
● Standard detector:

– Moderation of neutrons by means of passive moderator (polyethylene layers)
– 3He proportional tubes react with thermal neutrons and detect signals given by the 

ionization products inside the gas
– n + 3He --> 3H + p    (Q = 0.764 MeV)

Neutron detection
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Simulations
● BGO electromagnetic calorimeter simulation

– CALET proposal for the space station
– Circa 35 rad. lengths
– 400 GeV electrons
– 1 TeV protons

– Roughly same energy deposit in TASC (when 
interaction takes place in IMC)
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Simulations
● 1 TeV protons (Fluka)

release the same energy ....... as

● 400 GeV electrons (Fluka)
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Shower components

● 1 TeV proton ● 400 GeV electron

γ
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γ
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Simulations
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● Well developed hadronic 
showers (interaction in the 
first layers)

● Many more neutrons 
released

● Harder spectra than with 
electromagnetic showers

● Very strong correlation 
between arrival time and 
energy.

● 1 TeV proton showers
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NEUCAL

● Almost all neutrons exit from the calorimeter  within 
a few microseconds, but  thermalization inside the 
neutron detector can take hundreds microseconds 

● Sensitivity also to energetic neutrons.
● Detect neutron signals during moderation by using 

standard organic scintillators.
● Fast photomultiplier readout.
● Complement with 3He tubes.
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Number of layers.

● For low energy (100 
KeV) neutrons 2-3 
layers are sufficient.

● At 10-100 MeV 
efficiency drops and 
more layers are 
needed.

● At least 1 hit required.



February 2010 VCI2010, R.D'Alessandro 14

Dimensions
● From simulations:
● neutrons from the showers 

interact mostly within a 
radius of 20 cm from the 
shower centre.

● there is a lot of straggling 
and depending on the energy 
little or no interaction
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Lead foils

● KLOE calorimeter 
study.

● Simulations show a 
modest gain for high 
energy neutrons.

● Left as an option the 
possibility of inserting a 
.5 mm sheet.
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Detector
● Scintillator plates
● 3He tubes

● Photomultipliers, very fast.
● Slow high gain electronics

scintillatorlight guide

PMT

1 cm diameter
3He tubes
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Simple build

● Reusable ...... ● A lot of borrowing ....
PMT 

Hamamatsu Hamamatsu 
R5946R5946

Optical grease: Saint Gobain BC-630Saint Gobain BC-630
ELJEN TECHNOLOGY,
EJ-230 Poliviniltoluene, 
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A detection module

3He proportional counter tube: Canberra 12NH25/1Canberra 12NH25/1

1 cm diameter1 cm diameter

3X (25cm x 8cm x 1cm)
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Readout electronics
CAEN  V1731 / V1720 boardCAEN  V1731 / V1720 board

●     VME standardVME standard

●     8 ch, 500MS/s, 250MS/s8 ch, 500MS/s, 250MS/s

●     8, 12 bit ADC8, 12 bit ADC

●     2MB/ch memory (few ms 2MB/ch memory (few ms 
digitization)digitization)

●   16, 32 ns jitter16, 32 ns jitter

●     On-board data compression On-board data compression 
(Zero Suppression Encoding)(Zero Suppression Encoding)

● The idea is to capture a 
long “time exposure” of 
the detector after the 
trigger.

● Looking for neutron 
signals for up to a 
millisecond after the 
shower has ended.
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Test beam SPS 

● Shallow calorimeter 
scenario. 16X0.

● Tungsten, fibres. 
● Parasitic
● Separate readout

CALORIMETER

NEUCALNEUCAL
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Test beam conditions
● CERN  SPS, line H4  (one week test)
● Beam type – energy - # of events:

– PionsPions 350 GeV ( 230000 events)
– electronselectrons 100 GeV ( 240000 events)
– electronselectrons 150 GeV (   50000 events)
–   muonsmuons 150 GeV (130000 events)

● Data collected in different configurations:
– scan of detector (beam impact point)
– different working parameters

● PMTs and tubes voltages
● Digitizer boards parameters (thresholds, data compression…)
● 16 X0 for electrons, 29 X0 with pions ....



February 2010 VCI2010, R.D'Alessandro 22

Signals
● Expect single pulses coming after the main shower 

core has passed.
● After the trigger, a prompt signal appears on all 

scintillators, the result of the showering process.
● As the film unrolls other signals may show up. 

Traversing hadrons will give a visible signal on 
more than one scintillator (2-4 ns resolution of the 
system comes into play).

● A single isolated pulse is considered as a neutron 
candidate.
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Caveats
● NEED to operate in zero suppression mode!

– Huge data frame otherwise
– Enormous read-out time (seconds !)

● Due to a firmware bug, our fast signals were not 
recognised even though below threshold.

● Ad hoc solution using passive filters to “slow” the 
signals.

– Reflections introduced
– Took a small sample of data without zero 

suppression (without filters).
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Muon example
● 9 scintillator views, 2 trigger views, 5 3He views.

Trigger

3He tubes

Reflections
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Electron example
● 9 scintillator views, 2 trigger views, 5 3He views.

Trigger

3He tubes

Reflections
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Pion example
● 9 scintillator views, 2 trigger views, 5 3He views.

Trigger

3He tubes

Reflections

t ~34 µs

t ~100 µs



February 2010 VCI2010, R.D'Alessandro 27

Pion example
● 9 scintillator views, 2 trigger views, 5 3He views.

Trigger

3He tubes

t ~14.6µs t ~170µs

t ~12.6µs

t ~250µs
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Geant 4 simulation of  test beam set up 

● Calorimeters simulated 
as passive absorber 
blocks.

● Energy calibration from 
muons

● Reflections, spurious 
signals (high intensity 
spill).

OK

100 GeV electrons

OK

350 GeV pions
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Comparison (Data after 1 µs!)

75000 PION events

GEANT4

33000 ELECTRON events

GEANT4
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Comparison (2)
electrons

pions



February 2010 VCI2010, R.D'Alessandro 31

Before 1µs ?
● Cannot use zero 

suppressed data sets 
because of reflection 
problems.

● Very little data 
without filters.

● Saturation problems.
● 8 bit ADCs
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All is not lost
● Two scintillator blocks 

were read out by a 
slower 12 bit ADC.

● They are not in the 
immediate path of the 
shower.

● Some signals  have been 
extracted using 
procedures similar to 
the ones outlined 
before.
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Again a significant difference

● There are more “single” signals for pions than 
electrons.

100 GeV electrons

350 GeV pions
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Response to neutrons
● Had the opportunity to 

sit on the nTOF beam in 
November.

● We placed our detector 
at the end of the beam 
line and collected data.

● The analysis has still to 
start.

● Very intense p beam (20 GeV, 1012 p per spill)

● …But with very short spill (5 ns)

● …And very small duty cycle (5 ns/few ms)

● Neutrons are produced in the target with 
different energies

● Neutrons travel along the 200 m line

● The energy of the neutron is inferred from the 
arrival time on the Neucal detector
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Signals 
● By knowing the neutron 

spectrum (both in shape 
and absolute 
normalization) we can 
measure the single 
neutron efficiency as 
function of the neutron 
energy

● Analysis is complex. Scintillators
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Signals

Scintillators

Saturation effects
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Signals

3He tubes
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Conclusions 
● A new approach to hadron/electron separation is 

being pursued.
● Advantages are the possibility of achieving the same 

performance with lighter more compact calorimeters
● Results are very encouraging, and entice us to repeat 

the tests with more adequate electronics and with 
better calorimeter control.

● We thank the nTOF collaboration for their support 
and especially Marco Calviani who will collaborate 
with us on the analysis of the nTOF data.
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Backup 1
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Backup 2
● Simulated energy release inside 

one scintillator layer ● Fluka, Geant4 
comparison.

● 1 MeV neutrons

● 10 MeV neutrons
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Backup 3
- 100k single 1MeV neutron events. 
- Look for late produced (t>100ns) particles with EKIN>10keV. 
- Two categories: soft EKIN<3MeV, hard EKIN>3MeV. 
- particles originating in the active 3He counters volume ignored.
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