Performence of CMS ECAL with first LHC data

G. Franzoni - University of Minnesota On behalf of the CMS ECAL group

Vienna Conference on Instrumentation Feb 17, 2010

Outline

- Electromagnetic calorimeter at CMS
 - System description
 - Current status
- Results from cosmic rays
 - Muon stopping power in PbWO₄
 - Verification of global and regional energy scale
- Results from beam splash
 - Time measurement performances
- First collisions
 - π^0 observation for in-situ calibration

Electromagnetic calorimeter in CMS

ECAL layout

Physics target:

- Excellent resolution for di-photon systems; benchmark:
 H→ γ γ
- Target resolution for unconverted γ at high energy: 0.5%

Challenges:

- Fast response
- Tolerant to harsh LHC radiation environment

Barrel (EB)

36 Supermodules (18 per half barrel) 61200 crystals

Total crystal mass 67.4t

 $|\eta| < 1.48$

 $\Delta \eta \times \Delta \varphi = 0.0175 \times 0.0175$

Endcaps (EE)

4 Dees (2 per endcap) 14648 crystals

Total crystal mass 22.9t

 $1.48 < |\eta| < 3$

 $\Delta \eta \times \Delta \phi = 0.0175^2 \leftrightarrow 0.05^2$

Endcap Preshower (ES)

Pb (2X₀,1X₀) / Si

2 planes per endcap

137216 Si strips, each

1.8x61mm2

 $1.65 < |\eta| < 2.6$

PbWO4 crystals and photodetectors

- + EB crystal, tapered 34 types, ~2.6x2.5 cm² at rear
- + Two avalanche photodiodes (APD), 5x5 mm2 each, QE ~75%, Temperature coeff.: -2.4%/°C

Reasons for choice:

Homogeneous medium

Fast light emission ~80% in 25 ns

Short radiation length $X_0 = 0.89$ cm

Small Molière radius $R_M = 2.10 \text{ cm}$

Emission peak 425nm

Reasonable radiation resistance to very high doses

- + EE crystal, tapered 1 type, 3x3 cm² at rear
- + Vacuum phototriodes (VPT), more rad hard than silicon diodes; gain 8 -10 (B=3.8T), Q.E. ~20% at 420nm

Challenges:

Crystal LY temperature dependence -2.2%/OC

Need excellent thermal stability

Formation/decay of colour centres

Need precise light monitoring system

Low light yield (1.3% NaI)

Need photodetectors with gain in magnetic field

Status of the calorimeter

Preshower:

- Installed in Spring 2009
- Fully active throughout 2009 and LHC operations
- Excellent health and operational efficiency
- 99.7% of 137k channels perfectly functional for physics

Crystal calorimeter:

- EB and EE fully active throughout 2009 and LHC operations
- More than 99.2% of the 76k channels are in good health for physics
 - Of the remaining, 0.45% can be recovered using trigger data
- Triggers relying on ECAL cornerstones of CMS level-1 trigger:
 - Barrel: commissioned since 2008
 - Endcap: deployed and successfully commissioned in 2009

6

Pre-calibration

- Inter-calibration precision determines resolution at high energies
- Prior to installation @CMS, extensive campaigns of laboratory and test beams measurements to provide precalibrations:
 - Barrel:
 - 0.3% on 9 SM (electron beams)
 - 1.5-2.5% on 27 SM (cosmic rays)
 - Endcaps:
 - 7.4% (crystal LY ⊕ VPT gain)
 - 0.3% on 460 channels (electron test beam)
 - Preshower
 - 2% (cosmic rays)
- Global energy scale: tied to test beam for EB, EE, ES

$$\sigma(E) = \frac{a}{\sqrt{E}} \oplus \frac{b}{E} \oplus c$$

[1] EB study with 20-250 GeV beam electrons, 3x3 matrix:

Overview of results I'll show

Extended cosmic rays data taking: with and without solenoidal magnetic field 3.8 T

- Measurement of stopping power for muons
- Validation of local energy scale for EB

Beam splashes 2008&09: LHC 450 GeV beam dumped on collimators 150m from CMS

- Validation and improvement of intercalibration for EE
- Detector synchronization and time measurement performances

LHC collisions first collisions in 2009. $\sqrt{s} = 0.9$ TeV and 2.36 TeV

- Recorded collisions, verified synchronization
- Observation of π^0 and preparation for in-situ calibration

Cosmics rays

Muon stopping power in PbWO₄ [3]

- $dE/\rho dx$ as a function of muon momentum
- 88M cosmic muons 5GeV
 - dE: ECAL clusters (typical E: 300 MeV)
 - momentum measured by CMS silicon tracker
 - dx is length traversed in ECAL crystals
- Energy scale set at test beam validated in situ in EB with an overall uncertainty <2%:
 - Statistical accuracy: 0.3%
 - Systematic uncertainty: 1.6%
 - 1.2% online thresholds of online data reduction and clustering
 - 1.0% uncertainty on containment corrections
- Muon critical energy for PbWO₄:

 $160^{+5}_{-6} \, (\text{stat.}) \pm 8 \, (\text{syst.}) \, \text{GeV}$ (PDG calculated: 169.5 GeV)

Validation of EB local energy scale [4]

 dE/dx across supermodules (SM: 1.7k Xtal) compared to average intercalibration (different light yield)

Selections:

- Restrict to top-bottom SM
- Collisional losses only: 5GeV<p<10 GeV
- Angle muon-crystal <30°
- Statistical uncertainty: 0.4%
- Systematic uncertainty (grey band)
 - Scale dependence on muon-crystal angle (0.5%)
 - Variation of average muon momentum across SM's (<0.5%)
- Same cross check for group of 5 const- η rings (1.8k Xtal), vs η
- Response uniformity verified across El regions at 1% level

Normalised dE/dx

11

Beam splashes

Crystal ECAL: response to beam splashes 2009

- Average energy per crystal over ~800 splashes: 6-12 GeV
- White regions excluded from readout
- ECAL barrel was the trigger source for CMS for the splashes
- Modulation in plots results from combination of energy flow and CMS geometry effects:
 - shielding structures (square) and floor of the LHC tunnel (bottom)
 - Lower energy at large radius of downstream EE, due to shielding effect of barrel; indicates reduction of muon flux of 25%
 - The average muon fluence is about 5 muons cm⁻²

Preshower: response to beam splashes 2009

- Preshower was installed (Spring) & commissioned in 2009. It successfully operated during all beam splash events.
- White regions were excluded from readout: both fixed
- Number of muons per sensor crossing the ECAL preshower in a single beam splash:
 - Flux modulations consistent with the energy maps seen in the ECAL Endcaps
 - Isolated hot spots attributed to muon bremsstrahlung
 - Sensors cover 37.1 cm², thus the average muon fluence is about 5 muons cm⁻².

Improvement of EE inter-calibrations [4]

- Assume local uniformity of splash energy deposits:
 - Equalize response within 5x5 matrix
 - Inter-calibrate 5x5 matrices using laboratory pre-calibrations
- Combine splash-derived intercalibrations (10.4%) with laboratory pre-calibrations (7.4%)
- Validate the combination against
 EE region which was intercalibrated at test-beam
- Pre-calibration of EE improved to 6.3%

15

Time measurement and ECAL synchronization [5]

• Physics case: delayed particles (HSCP, GMSB γ)

• Time resolution:

$$o(t) = \frac{N}{A/\sigma_N} \oplus C$$

- A: amplitude in ADC
- σ_N : single sample noise (EB: 1.06, EE: 2.06)
- N: noise term
- C: constant term
- Resolution comparing 2 Xtal within the same cluster
- E>10 GeV performance determined by single channel time calibration (C) to account for:
 - Hardware time misalignment: O(1ns)
 - Non-universality of ECAL signal shapes
- Time pre-calibration set against μ TOF in splash events:
 - Statistical: <100 ps
 - Systematic: dependence on absolute value of μ TOF (<600ps)
- ECAL synchronized with splashes for sub-ns time precision at high energy

LHC collisions

November 23rd: first 900 GeV collisions

- First collisions immediately visible in the endcap
- clusters matching between two preshower planes and ECAL crystals

- First events validate relative synchronization EE+/EE- and indicate collisions cantered in CMS:
 - Time averages compatible (value determined by LHC-CMS clock phase)
 - 3.4 ns width compatible with O(1GeV) deposits

Observation of $\pi^0 \rightarrow \gamma \gamma$ and ECAL calibration

- Uncorrected MC and data distributions:
 - Compatible S/B, average and width
- π^0 mass low due to readout threshold (100 MeV) and 3x3 matrix energy containment.

- π^0 mass constraint intercalibration
 - Dedicated filter in high level trigger: up to 1 kHz π^0
 - Precision 0.5% with 2000 π⁰/
 Xtal (EB)→ (~10pb⁻¹)

Prospects:

- Commissioning of HLT selections for high rate π^0 stream
- Measuring from data corrections $D(\eta, \varphi)$
- Deploy in-situ intercalibration

19

CMS ECAL: conclusions

- Crystal part and preshower of CMS Electromagnetic calorimeter are fully operational at the CERN LHC
- Cosmic ray data:
 - Measure muon stopping power and critical energy in PbWO₄
 - Validate global energy scale (2%) and regional uniformity (1%)
- Beam splash events allow to validate and improve:
 - Endcap startup calibrations (6.3%)
 - Internal synchronization (<600ps) and time measurement performances
- ECAL successfully recorded collision events at LHC
 - Neutral pion observed
 - Commissioning of in-situ calibration

References

- [1] P. Adzic et. al. "Energy resolution of the barrel of the CMS Electromagnetic Calorimeter", JINST 2 P0400 (2007)
- [2] The CMS Electromagnetic Calorimeter Group "Intercalibration of the Barrel Electromagnetic Calorimeter of the CMS Experiment at start-up". JINST 3 P10007 (2008).
- [3] CMS collaboration "Measurement of the Muon Stopping Power in Lead Tungstate". arXiv:0911.5397
- [4] CMS collaboration "Performance and Operation of the CMS Electromagnetic Calorimeter" arXiv:0910.3423 accepted by JINST.
- [5] CMS collaboration "Time Reconstruction and Performance of the CMS Electromagnetic Calorimeter" arXiv:0911.4044 accepted by JINST.

$dE/\rho dx$ in PbWO₄ [3]: errors discussion

dE/odx fitted with:

$$(dE/dx)_{meas} = \alpha \left[\left(\frac{dE}{dx} \right)_{coll} + \beta \times \left(\frac{dE}{dx} \right)_{rad} \right]$$
 $\alpha = 1.004^{+0.002}_{-0.003} \, (stat.) \pm 0.016 \, (syst.)$ $\beta = 1.07^{+0.05}_{-0.04} \, (stat.) \pm 0.6 \, (syst.).$

$$\beta = 1.07^{+0.05}_{-0.04} \, (\mathrm{stat.}) \pm 0.6 \, (\mathrm{syst.})$$

- β controls critical energy
- α controls energy scale; syst. uncertainty: 1.6%
 - 1.2% online thresholds of online data reduction and clustering
 - 1.0% uncertainty on containment corrections
- $dE/\rho dx$ p>50 GeV: skewed distributions w/ decreasing stat.

 mean converging slowly
- Uncertainties used in the fit take this into account
- P.D.F. for $\langle dE/\rho dx \rangle$ from 10k Geant4 pseudoexperiments using the same statistics as the measurement. Define:
 - Central 68% interval: shaded region
 - Minimum width 68% interval (containing the most probable value): green limits

Most probable $\langle dE/\rho dx \rangle$ lower than expectation value

Beam splashes and synchronization

ECAL synchronization schema for collisions:

Measuring time inter-calibration with splash events:

$$\Delta t = \Delta t_{Readout} + \Delta t_{PlaneWave} = (\sqrt{x^2 + y^2 + z^2} - R \pm z)/c$$

Cluster matching

- First collisions immediately visible in the endcap
- clusters matching between two preshower planes and ECAL crystals
- Showing here both preshower planes

In-situ calibration strategy

Strategy	Time	Precision
<u>φ symmetry</u> : use invariance of mean energy deposited by jets at fixed η	Few hours	~2-3%
π ⁰ →γγ: mass peak at low L	Few days	≤1%
<u>Z→ee</u> : energy scale calibration	100 pb ⁻¹	<1%
<u>W→ev</u> : E/p measurement	5-10 fb ⁻¹	0.5%

25

Observation of $\pi^0 \rightarrow \gamma \gamma$ and ECAL calibration

- Raw π⁰ mass low due to readout threshold (100 MeV) and 3x3 matrix energy containment
- Applying corrections measured from MC:

