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GEM properties:
• Fast electron signal, no ion tail
• Amplification structure independent from readout
• Flexible material allows non planar geometries
• Possibility to cascade
• Cascading GEMs reduces discharge probability
(F. Sauli NIM A 386 (1997) 531)
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Gas Electron Multipliers
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COMPASS (NIM A 577 (2007) 455) – tracking:
• 31 x 31 cm2 active area
• X–Y strip readout
• Spatial resolution 46 µm
• Required rate capability ~ 150 kHz/cm2

LHCb (2008 JINST 3 
S08005) – forward 
muon triggering:
• 24 x 20 cm2 area
• Pad readout
• 4.5 ns time res.
• Required rate 
capability
~ 500 kHz/cm2

TOTEM (2008 JINST 3 S08007) – forward tracking 
and triggering:
• 30 cm diameter
• Combined strip and pad readout
• Required rate capability ~ 1 MHz/cm2

GEM applications (1)
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Cylindrical GEM feasibility study for Shine:
• Cylindrical triple GEM detector
• π coverage
• Based on 31 x 31 cm2 COMPASS GEM foils
• 2D cartesian readout with 400 µm strip pitch
• APV25 readout electronics

Truly spherical GEM for X–ray diffractometry:
• Spherical conversion gap gives zero parallax error
• GEM formed starting from a planar foil
• Forming on spherical mold with ~ 20 kg weight applied
• Temperature 350 °C for about 24 hours
• Conical field cage in the conversion gap
• Curved spacers to keep accurate spacing
• Planar or spherical readout

GEM applications (2)
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Upgrade of TOTEM T1:
• 2 telescopes constituted of back to back disks
• Each disk contains 5 chambers
• Chamber overlap allows adjustable disk radius
• Triple GEM chambers with ~ 2000 cm2 active area
• Chambers based on GEM foils 66 x 66 cm2

• Large area achieved splicing 2 GEMs together

KLOE–2 inner tracker (See E. De Lucia talk):
• Cylindrical triple GEM detector
• GEMs 96 x 35.2 cm2 active area
• Large area achieved splicing 3 GEMs together
• No spacers between GEM foils
• Cylindrical cathode with annular fiberglass 
support flanges

Motivation for large area GEMs (1)
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CMS high η region feasibility study:
• In the 1.6 < η < 2.1 region the planned RPCs were never installed
• Studying the possibility of introducing large area MPGDs
• Triple GEM chambers with 97 x 42 cm2 active area
• Rate capability sufficient for sLHC conditions

DHCal for ILC (A. White –
MPGD 2009):
• Modules of 1 m2 active area
• Double GEM, thin gaps to 
reduce total thickness

Muon tomography for homeland security (M. 
Hohlmann et al. – IEEE NSS 2009):
• Exploits multiple scattering of cosmic muons 
to locate high–Z materials in cargo
• Large area and many readout channels

Motivation for large area GEMs (2)
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Technological innovations
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Double mask photolithography Single mask photolithography
50 µm kapton foil 5 µm

copper clad on both sides

Photoresist coating,
masking, exposure

Photoresist development,
copper etching

Kapton etching

Metal etching

Second masking,
exposure

Development, etching,
final cleaning

Double mask vs. single mask
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1 – Photoresist lamination:
• Base material delivered in 457 (600) mm x 100 m rolls
• Piece of base material gets laminated with photoresist
• Lamination performed under pressure at 100 – 110 °C
• It is important to prevent the formation of air bubbles

2 – Exposition:
• Mask kept in place 
by vacuum system
• UV light 
polymerizes 
unmasked 
photoresist
• Important to tune 
the amount of light

3 – Photoresist development:
• GEM placed in an oven at 100 °C for a few minutes
• Sodium carbonate rinsing removes non polymerized 
photoresist

1

2

3

Creating the GEM pattern
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Etching the top copper electrode:
• Ferric chloride and hydrochloric acid rinsing create the 
hole pattern on the top copper electrode
• Basic bath removes the chromium layer in the holes
• Neutralization necessary

Photoresist 
removal:
• Ethanol used to 
remove the 
photoresist

Polyimide etching:
• Combining isotropic and anisotropic etching 
chemistries one can get steep holes
• Kapton holes form the mask for bottom copper etching
• Kapton profile will be finely tuned at a later stage

Potassium hydroxide (KOH) → isotropic

Ethylene diamine → anisotropic

Etching the holes in the GEM
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• Etching from the bottom
• Etching from the top, using the holes in the 
polyimide as mask

• Ammonium persulfate produces copper thickness 
variations over large areas → gain inhomogeneity
• Chromic acid produces more homogeneous etching
• GEM prototype for TOTEM T1 produced with this 
technique

• Copper etching is isotropic → rim appears around the holes → gain stability deterioration
• Possible to reduce the rim by slimming down the copper thickness before etching the holes

Etching the bottom copper layer
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• The base material is only 
457 (600) mm wide
• Possible to get larger 
width by splicing GEMs
• 2 mm width kapton 
coverlay on GEMs edges
• Pressed and heated up to 
240 °C

• Seam is flat, regular, 
mechanically and 
dielectrically strong
• Rate scan with ø 0.5 mm 
collimated X–ray beam
• Behaves normally until 
the seam
• Performance of the rest 
of the GEM is unaffected

Splicing GEMs
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Stretching:
• Thermal expansion 
of a plexiglass frame 
can be exploited for 
foil stretching
• Stretching bench 
with load cells 
connected to meters
• Honeycomb spacers 
could avoid 
stretching GEMs at allHandling:

• Some of the manufacturing steps 
take place in chemical baths of 
finite dimensions
• A foldable stainless steel portfolio 
allows handling GEM foils of up to 
200 x 50 cm2

• Single mask technology is suitable 
for mass production with roll–to–
roll equipment

CERN

CERN CERN

INFN – LNF

CERN

Stretching and handling GEMs



Marco Villa - VCI 2010

15

1 2

3 4 5

1 – Framing the sliced foils
2 – Making the honeycomb 
base plane and top cover
3 – Gluing the cathode to 
the honeycomb frame
4 – Final assembly of all 
frames
5 – Assembled prototype

Producing the TOTEM T1 prototype
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• Good gas tightness and high voltage stability
• Gain lower than standard (double mask) GEM, as 
expected from wider hole diameter
• Hole shape can be tuned by changing the 
composition of etching chemistry

• Energy resolution 22.4 % FWHM/peak 
for Cu X-rays in Ar:CO2 70:30

TOTEM T1 prototype performance



In order not to create the rim at all:
• Laminate a photoresist layer on the bottom electrode
• Apply ~ – 3 V DC to the top electrode → copper becomes inert to etching solution
• Etch the bottom copper with chromic acid using the polyimide holes as mask
• Go back to polyimide etching for ~ 30 s to get almost cylindrical holes
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• Almost cylindrical hole profile in the polyimide
• Perfectly defined holes on both top and bottom electrodes
• Spark voltage in air (650 ± 40) V
• GEM cleaning assures good robustness against sparks

ø 81 µm

ø 69 µm

Improving the copper etching
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• Double GEM 10 x 10 cm2 active area
•GapD 4.2 mm, gapT = gapI 2.2 mm
• ED = ET 2 kV/cm, EI 3 kV/cm
• Measurements performed in Ar:CO2 70:30
• Cu X–ray tube (Kα 8.04 keV, Kβ 8.9 keV)

• Max. gain ~ 3700 @ ΔVGEM 435 V [few 104 std GEM]
• Energy res. 20.8 % FWHM/peak [~ 20 % std GEM]
• Good time stability τ (14 ± 4) s [~ 30 min std GEM]
• Small gain variation 4 % [~ 10% std GEM]
• Robustness against sparks compatible with std GEMs
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Single mask GEM performance
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ø 95 – 55 µm ø 55 – 55 µm ø 55 – 95 µm

• Hole shape can be tuned by changing 
the composition of etching chemistry
• Possibility of choosing the optimal shape 
according to application
• Simulation of electric field lines for 
different geometries (Garfield)
• Simulation of electron end point as a 
function of the geometry (Garfield)

95–55 85–55 75–55 65–55 55–55 55–65 55–75 55–85 55–95

Simulating hole shape effects



• The single mask technique has proven to be a valid manufacturing technology for GEMs

• Hole parameters are under study and the optimization process is ongoing

• Using this technology it was possible to build a large size triple GEM of ~ 2000 cm2 active 
area which has successfully been tested

• Recent refinements of the production method give better control over the hole shape

• The technique offers attractive advantages for large area and large scale production

• Very well suited for industrial processing with roll–to–roll equipment

• A roll–to–roll compatible copper micro–etching machine and polyamide etching machine 
are foreseen for installation in the CERN workshop by the end of 2010

• Cost reduction from optimizing large scale production in collaboration with industry
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Conclusions & outlooks
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Backup slides
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CERN workshop capabilities

Detector technology
Currently 
produced

Future 
requirements

cm * cm cm * cm

GEM 40 * 40 50 * 50

GEM, single mask 70 * 40 200 * 50

THGEM 70 * 50 200 * 100

RTHGEM, serial graphics 20 * 10 100 * 50

Micromegas, bulk 150 * 50 200 * 100

Micromegas, microbulk 10 * 10 30 * 30

MHSP (Micro-Hole and Strip Plate) 3 * 3 10 * 10



In order not to create the rim at all:
• Laminate a photoresist layer on the bottom electrode
• Cover the top electrode with gold or tin by galvanic deposition
• Etch the bottom copper with chromic acid using the polyimide holes as mask
• Strip the photoresist layer, leave the top protection layer
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• The holes on the bottom appear to be very well defined
• Difficult to obtain good hermeticity of the top protective layer
• The slightest delamination between copper and kapton leads to copper underetching
• Gold remains above underetched copper increase spark probability

ø 91 µm

ø 64 µm

Improving the copper etching
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Time 0 s Time 4 s

• Deposition of electric charges on the polyimide plays 
an important role in GEMs behavior
• Successful simulation of electron charging up in a 
standard GEM with no gain
• Electrons created randomly above the GEM
• Electrons drifted and end point recorded
• Generation of new field map with deposited charges

Simulating the gain stability


