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Gas Electron Multipliers

Discharge probability

GEM properties:

* Fast electron signal, no ion tail
* Amplification structure independent from readout
* Flexible material allows non planar geometries

* Possibility to cascade
* Cascading GEMs reduces discharge probability
(F. Sauli NIM A 386 (1997) 531)

10°
*Am o source
Ar-CO,_ 70-30 ,
» ‘ I
o :
107 5 ¥
| SGEM
¢ : |
; ¢ DGEM g
§ +
; | TGEM
10 s v
; _ B
J ED =2kVem
0 T _ -1
i E,=E,=35kV om
1072 10° 10* 10° 10°

121900

Disch-G SDTGEM

Effective gain




Marco Villa - VCI 2010

GEM applications (1)
COMPASS (NIM A 577 (2007) 455) — tracking:
'y i * 31 x 31 cm? active area
* X=Y strip readout
* Spatial resolution 46 um
* Required rate capability ~ 150 kHz/cm?

— ——

LHCb (2008 JINST 3
S08005) — forward
muon triggering:

* 24 x 20 cm? area
* Pad readout

* 4.5 ns time res.

* Required rate
capability

~ 500 kHz/cm?

TOTEM (2008 JINST 3 S08007) — forward tracking
and triggering:

* 30 cm diameter

* Combined strip and pad readout

* Required rate capability ~ 1 MHz/cm?




Truly spherical GEM for X-ray diffractometry:

* Spherical conversion gap gives zero parallax error

* GEM formed starting from a planar foil

* Forming on spherical mold with ~ 20 kg weight applied

* Temperature 350 °C for about 24 hours
* Conical field cage in the conversion gap
* Curved spacers to keep accurate spacing
* Planar or spherical readout

GEM applications
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(2)

Cylindrical GEM feasibility study for Shine:

* Cylindrical triple GEM detector

* T coverage

* Based on 31 x 31 cm? COMPASS GEM foils

* 2D cartesian readout with 400 um strip pitch
* APV25 readout electronics




KLOE-2 inner tracker (See E. De Lucia talk):

* Cylindrical triple GEM detector
* GEMs 96 x 35.2 cm? active area

* Large area achieved splicing 3 GEMs together

* No spacers between GEM foils

* Cylindrical cathode with annular fiberglass

support flanges
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Motivation for large area GEMs (1)

Upgrade of TOTEM T1:

* 2 telescopes constituted of back to back disks

* Each disk contains 5 chambers

* Chamber overlap allows adjustable disk radius

* Triple GEM chambers with ~ 2000 cm? active area
* Chambers based on GEM foils 66 x 66 cm?

* Large area achieved splicing 2 GEMs together




. . e ———
Motivation for large area GEMs (2)
w e——Tax CMS high n region feasibility study:

*In the 1.6 < n < 2.1 region the planned RPCs were never installed
* Studying the possibility of introducing large area MPGDs

* Triple GEM chambers with 97 x 42 cm? active area
* Rate capability sufficient for sSLHC conditions

DHCal for ILC (A. White —
MPGD 2009):

* Modules of 1 m? active area
* Double GEM, thin gaps to
reduce total thickness

z:y:x:parameter

Muon tomography for homeland security (M.
Hohlmann et al. — I[EEE NSS 2009):

* Exploits multiple scattering of cosmic muons
el to locate high—Z materials in cargo

oo * Large area and many readout channels

-4000 -3000 -2000 -1000 0 1000 2000
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Technological innovations
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Double mask vs. single mask
Double mask photolithography Single mask photolithography
50 um kapton foil 5 um

copper clad on both sides

Photoresist coating,
masking, exposure

Photoresist development,
copper etching

Kapton etching

Metal etching - - - .

Second masking,

e T M A

Development, etching,

final cleaning - - - .




Creatmg the GEM pattern
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1 — Photoresist lamination:

* Base material delivered in 457 (600) mm x 100 m rolls
* Piece of base material gets laminated with photoresist
* Lamination performed under pressure at 100 — 110 °C
* It is important to prevent the formation of air bubbles

2 — Exposition:

* Mask kept in place
by vacuum system

* UV light
polymerizes
unmasked
photoresist

* Important to tune
the amount of light

3 — Photoresist development:

* GEM placed in an oven at 100 °C for a few minutes
* Sodium carbonate rinsing removes non polymerized
photoresist



Etching the holes in the GEM

Etching the top copper electrode:

* Ferric chloride and hydrochloric acid rinsing create the

hole pattern on the top copper electrode

* Basic bath removes the chromium layer in the holes

* Neutralization necessary

Polyimide etching:
* Combining isotropic and anisotropic etching

chemistries one can get steep holes

» Kapton holes form the mask for bottom copper etching \ u/

 Kapton profile will be finely tuned at a later stage

Photoresist
removal:

e Ethanol used to

remove the
photoresist

/[]\

Potassium hydroxide (KOH) = isotropic

Ethylene diamine = anisotropic
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Etching the bottom copper layer

* Etching from the bottom
* Etching from the top, using the holes in the
polyimide as mask

* Ammonium persulfate produces copper thickness
variations over large areas - gain inhomogeneity

* Chromic acid produces more homogeneous etching
* GEM prototype for TOTEM T1 produced with this
technique

» Copper etching is isotropic = rim appears around the holes = gain stability deterioration
* Possible to reduce the rim by slimming down the copper thickness before etching the holes



* The base material is only
457 (600) mm wide

* Possible to get larger
width by splicing GEMs

* 2 mm width kapton
coverlay on GEMs edges

* Pressed and heated up to

Splicing GEMs

240 °C
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* Seam is flat, regular,
mechanically and
dielectrically strong

* Rate scan with ¢ 0.5 mm
collimated X—ray beam

* Behaves normally until
the seam

* Performance of the rest
of the GEM is unaffected



Handling:

* Some of the manufacturing steps
take place in chemical baths of
finite dimensions

* A foldable stainless steel portfolio
allows handling GEM foils of up to
200 x 50 cm?

* Single mask technology is suitable
for mass production with roll-to—
roll equipment

Marco Villa -

Stretchmg and handlmg

INEN — LNF

GE
Ms
Stretching: — Meters
* Thermal expansion
of a plexiglass frame
can be exploited for
foil stretching

e Stretching bench
with load cells
connected to meters
* Honeycomb spacers
could avoid

stretching GEMs at all
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Producing the TOTEM T1 prototype
1 — Framing the sliced foils
2 — Making the honeycomb
base plane and top cover
3 — Gluing the cathode to
the honeycomb frame

4 — Final assembly of all
frames

5 — Assembled prototype




TOTEM T1 prototype per

® Large prototype * Small test foils

* Good gas tightness and high voltage stability

10000
* Gain lower than standard (double mask) GEM, as
expected from wider hole diameter
* Hole shape can be tuned by changing the
'§o'°°° composition of etching chemistry
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Improving the copper etching
In order not to create the rim at all:
e Laminate a photoresist layer on the bottom electrode
* Apply ¥ —3 V DC to the top electrode - copper becomes inert to etching solution

* Etch the bottom copper with chromic acid using the polyimide holes as mask
* Go back to polyimide etching for ~ 30 s to get almost cylindrical holes

20 pm
—_—

* Almost cylindrical hole profile in the polyimide

* Perfectly defined holes on both top and bottom electrodes
* Spark voltage in air (650 + 40) V

* GEM cleaning assures good robustness against sparks



Double GEM gain

Normalized gain
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Single mask GEM performance
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* Double GEM 10 x 10 cm? active area
*Gapp 4.2 mm, gap; = gap, 2.2 mm

*E, = E; 2 kV/cm, E,; 3 kV/cm

* Measurements performed in Ar:CO, 70:30
* Cu X-ray tube (K, 8.04 keV, K; 8.9 keV)
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200
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0

ADC channel
* Max. gain ~ 3700 @ AV, 435 V [few 10% std GEM]
* Energy res. 20.8 % FWHM/peak [~ 20 % std GEM]
* Good time stability T (14 £ 4) s [~ 30 min std GEM]
* Small gain variation 4 % [~ 10% std GEM]
* Robustness against sparks compatible with std GEMs



Simulating hole shape ef
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_, Electron drift lines from a track @ 95 -55 pm , Electron drift lines from a track @ 55 — 55 pm , Electron drift lines from a track @ 55 — 95 pm
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Conclusions & outlooks

* The single mask technigue has proven to be a valid manufacturing technology for GEMs
* Hole parameters are under study and the optimization process is ongoing

* Using this technology it was possible to build a large size triple GEM of ~ 2000 cm? active
area which has successfully been tested

* Recent refinements of the production method give better control over the hole shape
* The technique offers attractive advantages for large area and large scale production
 Very well suited for industrial processing with roll-to—roll equipment

* A roll-to—roll compatible copper micro—etching machine and polyamide etching machine
are foreseen for installation in the CERN workshop by the end of 2010

* Cost reduction from optimizing large scale production in collaboration with industry



Backup slides
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CERN workshop capabilities
Detector technology oroduced | requirements
cm * cm cm * cm
GEM 40 * 40 50 * 50
GEM, single mask 70 ¥ 40 200 * 50
THGEM 70 * 50 200 * 100
RTHGEM, serial graphics 20 * 10 100 * 50
Micromegas, bulk 150 * 50 200 * 100
Micromegas, microbulk 10 * 10 30 * 30
MHSP (Micro-Hole and Strip Plate) 3%3 10 * 10
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Improving the copper etching

In order not to create the rim at all:

e Laminate a photoresist layer on the bottom electrode

* Cover the top electrode with gold or tin by galvanic deposition

* Etch the bottom copper with chromic acid using the polyimide holes as mask
* Strip the photoresist layer, leave the top protection layer

§ :
W 0] | —— ——

* The holes on the bottom appear to be very well defined

* Difficult to obtain good hermeticity of the top protective layer

* The slightest delamination between copper and kapton leads to copper underetching
* Gold remains above underetched copper increase spark probability



Marco

Simulating the gain sta

* Deposition of electric charges on the polyimide plays
an important role in GEMs behavior

* Successful simulation of electron charging up in a
standard GEM with no gain

* Electrons created randomly above the GEM

* Electrons drifted and end point recorded
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