

The CMS muon system

Barrel: 5 Wheels Endcap: 4 Disks per side

Total Weight: 14,500 tons Overall diameter: 14.60 m Overall length: 21.60 m Magnetic Field: 3.8 T 3 different technologies of gaseous detectors

Drift Tube (DT) in the barrel ($|\eta| < 1.2$) Cathode Strip Chambers (CSC) in the endcaps (0.9 < $|\eta| < 2.4$) Resistive Plate Chambers (RPC) both in barrel and endcaps (up to $|\eta|=1.6$)

All detectors used both in triggering and reconstruction

Commissioning with Cosmic Rays

- Until 2006 independent commissioning and assembling of detectors
- August 2006: Magnet Test/Commissioning Challenge
 - Test & mapping of magnet at 4T on surface, global data taking with a fraction of each CMS sub-detector

- May-August 2008: Weekly "global runs" + Cosmic Runs At Zero Tesla (CRUZET)
- Entire CMS integrated; 300 M events, B off
- Sep 2008: First beams
- Beam splash events; beam halo
- Oct 2008: Cosmic Run at Four Tesla (CRAFT 08)
 - 270M events, full detector, nominal B field
- Aug 09: CRAFT 09
 300M events
- December 2009: LHC collisions
 - first muons from LHC collisions

Barrel: Drift Tubes (DT)

(4+4) layers in the bending coordinate (Φ)
4 layers measuring z (Θ)
(except in outermost station)

Anode wire Electrode strips

250 chambers (50 per wheel) 5 wheels / 12 sectors / 4 stations Readout channels>170k

-Chamber (transverse section)

Honeycomb

Gas mixture: Ar/CO₂ (85/15) %

Gas mixture: Ar/CO₂ (85/15) % Anode wire: 3.6 kV Electrode strips: 1.8 kV Cathode: -1.2 kV Vdrift ~ 55 μ m/ns \rightarrow Max drift time ~380 ns Single wire resolution ~ 200 μ m Local reconstruction (r- Φ) ~ 100 μ m

DT performance with Cosmic rays

Drift velocity in the Drift Tubes: Innermost chambers in outermost wheels affected by B-field with a deviation up to 3%

More details in C. Battilana Poster

Endcap : Cathode Strip Chambers (CSC)

Tracking and triggering in the endcaps. CSCs used due to higher B field and rate

MWPC chambers with cathode strip readout

- 6 layers per chamber
 - 9.5 mm gap, $Ar/CO_2/CF_4$ (40/50/10)%
- Bending coordinate (Φ) measured by centroid on strips
 - Strip pitch 8.4-16 mm
- Fast response from wire group (r coordinate) for BX identification
- Design resolution
 - ~150 $\mu m/chamber$

- 75 μ m for the innermost chamber that operate in a critical region (less spaced, tilted wires; smaller strips; smaller gap)

CSC performance with Cosmic rays

Gaussian fits to residuals distributions (ME2/2). Variation with track position within the strip

RPC: INFN Resistive Plate Chambers Istituto Nazionale di Fisica Nucleare

• Double-gap in avalanche mode to cope with hit rates up to ~1KHz/cm²

• $C_2H_2F_4$ /iso- C_4H_{10} /SF $_6$ (96.2/3.5/0.3)%; closed loop

• Strips measure bending coordinate (Φ ~1 cm resolution)

• Fast response; very good timing resolution (~2ns)

RPC used both in reconstruction and triggering in barrel and endcaps

BARREL 480 chambers (72 per wheel) 5 wheels / 12 sectors / 6 stations Readout channels > 50k

ENDCAPS

432 chambers (72 per Disk)
6 Disks / 2 rings / 36 stations Readout channels > 40k

RPC performance with INFN Cosmic rays RPC muongraphy

Efficiency above 90% estimated from extrapolation of DT/CSC segments

- Noise below 1 Hz/cm2
- spacial resolution 1.1 cm

Efficiency and noise vs HV for two different electronic thresholds

Istituto Nazionale

di Fisica Nucleare

DT trigger

- Search for hits aligned in each muon station.
- Up to 2 muon segments per station for each BX
- A ghost suppression mechanism to remove fake or wrong candidates

Trigger electronics at chamber level

•Trigger segments from each station are matched together according to predefined Look-up-Tables

•pt, position, charge and quality are assigned

Anode view

Cathode view CathodeLocalChargedTrack (CLCT) : 6 layers provide a (~ 1 mm) measurement of position in r- Φ

AnodeLocalChargedTrack (ALCT):

BX identification (~ 4.5 ns precision)

the coincidence of \geq 4 layers define a muon segment

Track Finder: reconstruct tracks and assign pt, Φ , η and quality select 4 highest quality candidates to send to the Global Muon Trigger

Select 4 higher pt muons from barrel and 4 from end-caps and deliver them to Global muon trigger High Pt Muon pattern: (0,0,0) defined on 4 layers

Muon trigger performace with Cosmic Rays

Muon Reconstruction

Muon reconstructed independently both in Tracker and in muon system

Inner tracker dominates resolution up to 200 GeV/c due to multiple scattering in the iron
Above 200 GeV/c, improvement from combined muon-tracker fit
Resolution measured by comparing bottom and top leg of the cosmic track

Global Muon from combined fit

StandAlone Muon track

Tracker Track

Some nice Cosmic Muon

Some nice Cosmic Muon

LHC Collisions Data

Barrel muon candidate

 $p_T(\mu_1) = 3.6 \text{ GeV/c}, \ p_T(\mu_2) = 2.6 \text{ GeV/c}, \ m(\mu\mu) = 3.04 \pm 0.04 \text{ GeV/c}^2$

CMS made good use of the Cosmic Rays data

- More than 500 M events collected between 2008-09
- Sub-detector and trigger performance checked
- Mapping of magnetic field at level of 3 %
- Alignment precision comparable to 10 pb⁻¹ of LHC Data
- Reconstruction algorithm verified and tuned on real Data
- First muons from LHC collisions reconstructed

Ready for more muons from LHC collisions in few days