

New Thick Hole-Type Structures for Gaseous Detectors

João Veloso

CAB Azevedo and C.A.Santos

Physics Department – University of Aveiro

F. D. Amaro and J.M.F. dos Santos Physics Department – University of Coimbra

A. Breskin and R. Chechik Weizmann Institute of Science, Rehovot

IBF Achievements with MHSP and COBRA

- Achievements with the F-R-MHSP shows IBF level needed for visible sensitive GPM.
- Also with COBRA, but this one with limited collection efficiency.

A. Lyashenko et al., NIMA 598(2008)116

A. Lyashenko et al., NIMA JINST(2009), in press

IBF close to 10⁻⁴
Full ECE

COBRA

IBF 1000 x lower than with GEMs At the expense of ECE (20%)

Thick-? Structure – large areas

- In order to apply the same principle, it was produced a new Thickstructure with the goal of reduce IBF in cascade Thick-structures.
- Same principle of Thick-GEM production....

- -Cathodes "strips" with a circular shape surrounding the holes;
- -holes (0.3 mm diameter with a 0.1 mm rim), are placed in an hexagonal lattice with a pitch of 1.0 mm;
- -anodes (0.3 mm wide), running between each pair of cathodes.

Thick-MHSP

- Before starting IBF studies we have polarized the structure like in a MHSP standard operation.
- Polarization scheme similar to MHSP

MHSP

Thick-MHSP

First simulation results with Garfield (preliminary)

Thick-MHSP gain

- From this study we got very surprising results:
- Gas gains of the order of 10⁵ for all the studied gases

Single photon counting

Good single photon response.

Time stability

- Good stability with time for the measured gain (10⁴)
- Cd-109 x-ray source, low count rate ~100Hz

Energy response

Spectrum obtained for a Cd-109 x-ray source @ a gain ~ 10⁴

Preliminary IBF reduction capability with Garfield

Pure Ar @ 1bar - V_{hole}=1200V

Preliminary IBF reduction capability simulation (Garfield)

Pure Ar @ 1bar - V_{hole}=1200V

Conclusions & future work

Both, experimental and simulation results are in course

GAIN

- Good gas gains were observed in current and pulse modes for the different studied gases.
 Comparable with double Thick-GEM.
- Good single photon detection was observed.
- More studies are needed for better understanding the avalanche development and the resulting gain increase when polarizing the extra electrode.

IBF

- GPMs operating in Thick-GEM cascades: semitransparent or reflective PCs.
- Experimental studies of:
 - IBF,
 - collection efficiency and;
 - gain.

Using the Th-structure in reverse mode or flipped reverse mode are in cource.

- Preliminary simulation studies indicates that good IBF reduction could be possible.
- Depending on the results for IBF, this structure will allow to increase the lifetime of this
 photodetectors in the same order of magnitude as the out-coming results for the IBF
 reduction.

Thanks for your attention

