

Development of µHV miniature HV supplies

Harry van der Graaf, Henk Groenstege, Fred Hartjes and Jaap Kuijt

Concept

- Putting dedicated HV units in the vicinity of a detector
- Commercially available HV supplies are not suited for this
 - Often too bulky
 - May use iron based transformers
 - => do not operate in a magnetic field
 - Not radhard
 - Designed to deliver substantial power (1 W or more) where powers in the mW region are needed
 - Mostly no trip level in the nA region

- As small as possible
- Limited output power
 - 5 mW for MPGDs and diamond
 - Up to few 100 mW for silicon
- => two different versions have to be made
- Small input power (< few mW without output power)
- Ranging from 400 to ~ 1000V
- Very radhard (until 1 Grad, 10⁷ Gy)
- Minimal noise emittance
- Output voltage stabilization, low ripple
- High resolution current measurement (< 1 nA resolution)
- Trip level in the nA region
- External communication via CAN bus

Creating HV with Cockroft-Walton circuit

- Block pulses in (duty cycle modulation)
- No transformer
- Voltage divider feedback for stabilisation

Measurement output current

Using inductive DC-DC converters

Cockroft-Walton supply

- Control by PCI-bus
- Voltage control by regulating duty cycle at output stage
 - Need to regulate +50V supply (amplitude block pulse) as well

Regulating block pulse amplitude

Only simulated

Not miniature yet

- Presently 38 x 52 mm PCB
- ♦ To be treated with Parylene (moisture barrier)

Status

- Project just started up
- Regulation 50V supply to be implemented
- Miniaturize components
 - Radhard

