WG1 summary

RD51 meeting, Kolympari, Greece 16-18 June 2009

Serge Duarte Pinto, Paul Colas

Task 1 – Large area detectors

MAMMA, Joerg Wotschack
Plans for upgrading forward muon system of ATLAS

Phase I

Phase II

- Thin chambers to be added to CSCs
- Number of ch./module for 500 μm pitch:
 - $-2400 \times 2 = 4.8 \text{ k (precision strips)}$
 - O(200) strips for 2nd coordinate
 - O(1000) pads for trigger
- Total/module: 6 k channels
- 32 chambers of 1 m2 with 4 active layers each (total MM area 100 m2)
- Total # of channels: 200 k

- Three multigap chambers to replace all EI MDTs and CSCs
 - 288 chambers of $\Delta r \approx$ 1100 mm
 - Strip pitch: 500 (or 250) μm
 - Max strip length: 1 m
 - 5–10k channels/chamber
- Three multigap chambers to replace
 EM MDTs + TGCs for η > 2
 - 96 chambers of $\Delta r \approx$ 1700 mm
 - 7–15 k channels/chamber
- All chambers vertically installed
- Total MM area close to 2000 m²
- Total # of channels: 2.25 M (4.5 M for 250 μm strip pitch)
- Trigger:
- Bunch ID from thin gaps (pads) from first time signals (<5 ns)
- Fast or for LV1 decision
- Track angle (LV1) from time measurement on precision strips

News

- 1.5 x .5 m² prototype
 Half the final size. Segmented mesh,
 250 and 500 μm strip pitches, longer strips (350 & 850 mm)
- 10 x 10 cm² chambers
 250 μm strip pitch & better mesh (450 lpi, 18 μm wires, pre-stretched)
 compared to P1 prototype. T2K
 connectors, read out with T2K
 electronics or other.
- Test beam

With new electronics, new mesh, and resistive anodes (2 types, see conference talk by K. Nikolopoulos)

• Micro-TPC

Study to explore the possibility to use information on drift time spread to improve resolution for inclined tracks

First strip

- Track angles 10-20°
- Drift gap 7 mm
- 4-8 strips hit for 250 μm pitch
- Time res. few ns needed
- Coarse charge measurement

Other applications of large Micromegas

 COMPASS tracking, with pixellized central area. Conference talk by D.P.F. Neyret

DHCal for ILC.
 Conference talk by M.
 Chefdeville

• TPC for ILC.
Conference talk by D.
Attié

GEMs & thickGEMs for CBM muon chambers

by Anand Kumar Dubey

- Also medical applications foreseen
- Readout by NXYTER front-end electronics
- Rate ~ 10 MHz/cm²

Further news on large GEMs

- Progress on large area GEMs, Conference poster by M. Villa
- DHCal for ILC. Conference talk by A. White
- TPC for ILC and PANDA. Conference talks by J. Kaminski and X. Zhang

• STAR tracker. Conference talk by B. Surrow

And thick GEMs for RICH applications, Conference talk by F. Tessarotto

Large area production

- Rui's talk at the conference about large area and large volume production, including involvement of industrial partners (which have already been contacted)
- In parallel session, more details and ideas from Rui about readout boards, particularly with resistive and capacitive layers
- Resistive anodes for reduction of channel count. Conference talk by M. Dixit

Bulk production in Saclay, Stéphan Aune

New lab built up last year in Saclay, with new equipment:

- Stretching machine (2008)
- Laminator unit (2008)
- Large oven (2008)
- Insulator unit (2009)
- Development unit (2009?)

Cost:

Budget R&D bulk 2008 et 2009 : 60 k€ + 20 k€ of safety

consumable: 10 k€/year

Task 4 – Portable detectors

Two approaches to portable high voltage supplies:

- µHV, Fred Hartjes.
 Cockroft-Walton supply with output current measurement, compatible with high magnetic field
- HVGEM, Fabrizio Murtas.
 7-channel active divider for proper field adjustment in case of a discharge

