## Working Group 5 Crete

### Task: Common electronics

- Scalable RO system (test system => large system)
- User/application specific frontend (chip level)
- RD51 standard electronics cards
- DAQ system: DATE due to its stability and longterm support
- Applications and timescales
- Connectors, power, packaging, distances

## Working Group 5 Crete

### Task: Common Readout Chips

- Chip Matrix
- Preferred chip choice: APV25, Timepix, AFTER,
- S-ALTRO ?
- Technology templates
- Availability

## Summary WG5 meeting

### rd51-wg5-contacts@cern.ch

- Welcome and presentation of new convenors (J.Kaminski, H.Muller) Hans Taureg
- Common readout system revisited from last WG5 meeting Jose Toledo, UPV Valencia
   summary of the proposed solution, timescales, manpower, resources H.Muller, CERN
- Matrix of Readout chip candidates
   APV25, VFAT, Timepix-2, AFTER, (S-ALTRO) and more Jochen Kaminski Uni Bonn
- discussion on power, mechanics, HV control, connectors to carriers Hans Muller CERN
- Slow Controls (DCS) Hans Muller CERN
- Data Acquisition: DATE case example ATLAS Mmega - Joerg Wotschack CERN
- Applications
  - Electronics for NEXT Jose Toledo, UPV Valencia
    Electronics triple GEM TPC Jochen Kaminski, Uni Bonn
    Electronics upgrade for ALICE Calorimeters CCNU Wuhan team (presented by H.Muller)
- Action Items and goals for next meeting

Attendance WG5 5-8 persons

## Scalable concept in a nutshell



### **Confirmed USERs / Applications**

- NEXT (dual Beta decay ): dedicated FEE electronics/
   Gigabit Ethernet hardware implementation
- CCNU Wuhan team: upgrade projects for ALICE LHC: serial protocol, Board Controller Firmware
- ATLAS MMega project: upgrade of Altro-based system
- LC –TPC for Timepix-based readout
- Other applications under discussion

## **Project Timing**



# First target: 1 Gbit/s to DAQ single SRU system



### **CHIP** matrix

### Overview of Candidate Chips

| Name        | # channels | preshaper | ADC<br>bit | noise                      | Fast-OR | power      |            |
|-------------|------------|-----------|------------|----------------------------|---------|------------|------------|
| APV25       | 128        | 50ns      | analog     | 1200e <sup>-</sup> at 20pF | no      |            |            |
| AFTER       | 72         | 100ns-2μs | analog     | 800e rms                   |         | 8mW/c.     | T2K        |
| Timepix     | 65536      | 110ns     | 14         | 100e- rms                  | no      | 16μW/c.    |            |
| VFat        | 128        | 22ns      | 1          | 650+50e/pF                 |         |            |            |
| Carioca     | 8          |           | 1          | 2000e + 50e/pF             |         | 45mW/c.    |            |
| Beetle      | 128        | 23ns      | 128*1      | 500e + 50e/pF              |         | 5.5mW/c.   |            |
| Dirac       | 64         |           | 8          |                            |         | 10μW/c.    | ILC        |
| KPix        |            |           |            |                            |         |            |            |
| DCAL        | 64         | 65-125ns  | 1          |                            |         |            | ILC-Calice |
| SPIROC      | 36         | 50-175ns  | 12         |                            |         | 15μW/c.    | Si-PM      |
| SVX3/4      | 128        | 80ns      | 8          | 500e + 60e/pF              |         | 2mW/c.     |            |
| Gossipo-3/4 | 32         | 4ns       | 1          | 800e + 60e/pF              | yes     | 24mW/c.    |            |
| SALTRO      | 64         | 30-300ns  | 10         |                            | no      | 32-60mW/c. |            |
| Timepix-2   | 65536      |           |            |                            |         |            |            |

### Timepix





256 \* 256 pixel

pixel size:  $55 * 55 \mu m^2$ 

chip dimensions: 1.4 \* 1.4 cm<sup>2</sup>

Each pixel can be set to one of these modes:

- hit counting
- TOT = time over threshold gives integrated charge
- time between hit and shutter end
- hit/no-hit

current running condition:

checker-board pattern of TOT and Time



### **New FPGA-based Readoutsystem by**

University of Mainz
Mainz is designing and building a new FPGA-based readout for Timepix chips.



- Readout with maximum speed (100MHz)
- Connection to PC with Gigabit Ethernet
- FPGA:
  - De-/serialization of data streams
- Conversion CMOS LVDS
- Firmware in VHDL
- · Software and firmware are in good shape but some missing functionality until now
- Serialization and ethernet communication are correct
- Not at full speed yet (needs matching of clock to delayed data stream in Timepix)
- Chip can be read out, test with detector at Bonn soon





XYLINXdevelopment board



## Electronics for NEXT: a neutrino experiment with a Xenon gas TPC

A solution based on RD-51 electronics

J. Toledo on behalf of the NEXT collaboration

Goal: build and operate a TPC filled with 100 kg HPGXe enriched with 136Xe to

measure its  $\beta\beta0\nu$  decay.

#### Time schedule

- √ 1<sup>1/2</sup> years from now for the NEXT-1 prototype operation
- √ 2<sup>1/2</sup> years from now for the 1:10 prototype NEXT-10 to prove feasibility
- √ 4<sup>1/2</sup> years from now for NEXT-100 with full operation in the LSC

We plan to use RD-51 electronics already in NEXT-1

#### NEXT:

### Online system

DAQ PC



DAQ PC running ALICE DATE (Data Acquisition and Test Environment)

DATE produces ROOT compatible files Soon: DATE support for Gigabit Ethernet (Q4'09)



One task for NEXT in RD-51: DATE-compatible Gbit Ethernet frames generation from FPGA Mmega Setup (Atlas)



### Typical ADC spectra

- Noise subtraction (from 12 pre-samples)
- Custer position from center of gravity



## Mmega Experience with DATE

- Run Control system (DATE): very nice
   Easy to handle and extremely stable
- Readout controller (RCU)

Fragile: must be protected against trigger signals while initializing, and during processing

Initialization through ethernet connection, not integrated in the RunControl (a bit clumsy)

### DCS mezzanine on SRU



36 x Serial quad LVDS links (CAT6) to FEE cards

### Slow controls Overview



## Huazhong Normal University (Wuhan) activities within RD51 scalable readout project





FEE card produced in Huazhong Normal University for ALICE/PHOS project



Readout Electronics Test SetupAltro-based FEE card for APD

6/24/2009 readout Dong Wang, CCNU Wuhan



### Firmware of PHOS/TRU trigger



Board Controller Firmware of FEE &

Participation in ALICE RCU

### Wuhan tasks: BC firmware and serial protocol



## Summary

- Common readout system well on track
- Preferred chip choices done
- Proto RO system by end 2009
- Full systems mid/end 2010
- Driven by applications ( NEXT etc )
- New teams joined and new manpower
- More participation welcome