

RD51 Collaboration Meeting @Crete, June 172009

Conveners: please review proposal tasks/timescales \& contributions of diffferent institutes into your WG activity

Task/Milestone Reference	Participating Institutes	Description	Deliverable Nature	Start/Delivery Date
WG1-1/Development of large-area Micro-Pattern Gas Detectors - Micromegas	CEA Saclay, Demokritos, Napoli, Bari, Athens Tech. U., Athens U., Lanzhou, Geneva, PNPI, Thessaloniki, Ottawa/Carleton	Development of large area Micromegas with segmented mesh and resistive anodes	First prototype $\left(1 \times 0.5 \mathrm{~m}^{2}\right)$	$\mathrm{m} 1 / \mathrm{m} 12$
			SLHC full size	m13/m60
	CEA Saclay, Ottawa/Carleton Demokritos, Athens Tech. U., Athens U.		ILC full size	m13/m36
WG1-1/Development of large-area Micro-Pattern Gas Detectors - GEM	Bari, CERN, Pisa- Siena, Roma, Arlington, Melbourne, TERA, PNPI, MPI Munich, Argonne	R\&D	Report, small size prototypes	m1/m18
	Bari, CERN, PisaSiena		Full scale prototype	m6/m18
			Development completed	m19/m30

R \& D Proposal

Development of Micro-Pattern Gas Detectors Technologies

Editors: Matteo Alfonsi (CERN), Alain Bellerive (Carleton University), Amos Breskin (Weizmann Institute), Erik Van der Bij (CERN), Michael Campbell (CERN), Mar Capeans (CERN), Paul Colas (CEA Saclay), Silvia Dalla Torre (INFN Trieste), Klaus Desch (Bonn University), loannis Giomataris (CEA Saclay), Harry van der Graaf (NIKHEF), Lucie Linssen (CERN), Rui de Oliveira (CERN), Vladimir Peskov (St Etienne), Werner Riegler (CERN), Leszek Ropelewski (CERN), Fabio Sauli (TERA Foundation), Frank Simon (MPI Munchen), Hans Taureg (CERN), Maxim Titov (CEA Saclay), Andy White (University of Texas), Rob Veenhof (CERN)

We encourage ALL RD5I members to use this forum for WG discussions

| Home |Help

View All Site Content

Pictures

RD51 Collaboration

Pictures
Documents
RD51 Documerts
New Institutes Survey
Proposal skeleton
Old Documents Library
LHCC
Disc/ssions
WG1: Technolcgical Aspects and Development of New detector Structures

WG2: Common Characterizaticn and Physics Issues
WG3: Applications
WG4: Simulations and Software Tools
WG5: MPGD Related Electronics
WG6: Production

MicroPattern Gas Detectors Announcements

Paris meeting agenda
by Leszek Ropelewski
2nd RD51 Collaboration Meeting from 13 October 15 October 2008

Monday 13 October 2008

13:30->14:00 Registration
14:00->16:00 Plenary Session-Opening and Reviews (Convener: Silvia Dalla Torre) (Amphitheatre)

14:00 Welcome...

RD51 meeting reminder
28/09/2008 10:53 PM
by Leszek Ropelewski
Dear Colleague,
The time of the RD51 Collaboration meeting is approaching. We are finalizing scientific program. You can find tentative agenda in the meeting web page under Timetable tab.
http://indico.cern.ch/conferenceDisplay.py?confld=35172

Message from LHCC chair person
by Leszek Ropelewski

https:/llespace.cern.ch/test-RD51/dlefault.aspx

Links

- 2nd RD51 Collaboration Meetinc in Paris
- Meeting with LHCC referees
- 94th LHCC Meeting
- CERN Courier: NIKHEF meeting \& RD51 info
- 1st RD51 Collaboration Workshop at NIKHEF
- MPGD R\&D Workshop at CERN
- Old MPGD R\&D page
- Old RD51 List of Institutes and Questionnaires
- CERN PH Faculty Meeting - MPGD R\&D
- Add new link
-RD51 Note-2009-001: Supratik Mukhopadhyay et al.,
« neBEM: a Field Solver «
- RD51 Note-2009-002: Mar Capeans et all,
«About aging of gas detectors: a compilation of some validation studies carried out for LHC «

We encourage all members to publish resulits of your work as RD51 Internal Notes or RD51 Public Notes (e.g. conference proceedings, etc.)

This will greatly facilitate exchange of information and improve RD51 internal documentation

RD51 in INDICO

5

httip:/IrdI51-public.web.cern.ch/RD51-Public/

We encourage to reference this webpage to promote RD51 collaboration activities

\| Home \|Organization \|WG Activities \|Meetings \| Documents \| Safety \|Other Links

RD51 Collaboration
 Development of Micro-Pattern Gas Detectors Technologies

The proposed R\&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. The main objective of the R\&D programme is to advance technological development and application of Micropattern Gas Detectors.

The invention of Micro-Pattern Gas Detectors (MPGD), in particular the Gas Electron Multiplier (GEM), the Micro-Mesh Gaseous Structure (Micromegas), and more recently other micro pattern detector schemes, offers the potential to develop new gaseous detectors with unprecedented spatial resolution, high rate capability, large sensitive area, operational stability and radiation hardness. In some applications, requiring very large-area coverage with moderate spatial resolutions, more coarse Macropatterned detectors, e.g. Thick-GEMs (THGEM) or patterned resistive-plate devices could offer an interesting and economic solution. The design of the new micro-pattern devices appears suitable for industrial production. In addition, the availability of highly integrated amplification and readout electronics allows for the design of gas-detector systems with channel densities comparable to that of modern silicon detectors. Modern wafer post-processing allows for the integration of gas-amplification structures directly on top of a pixelized readout chip. Thanks to these recent developments, particle detection through the ionization of gas has large fields of application in future particle, nuclear and astro-particle physics experiments with and without accelerators.

The RD51 collaboration involves ~ 350 authors, 59 Universities and Research Laboratories from 20 countries in Europe, America, Asia and Africa. All partners are already actively pursuing either basic- or application-oriented R\&D involving a variety of MPGD concepts. The collaboration established common goals, like experimental and simulation tools, characterization concepts and methods, common infrastructures at test beams and irradiation facilities, and methods and infrastructures for MPGD production.

http:/IIrd51-public.web.cern.ch/RD51-PublicI

WG Conveners:

> Please update your public WG webpages

IHome IOrganization IWG Activities Meetings IDocuments ISafety IOther Links

RD51 Collaboration

Development of Micro-Pattern Gas Detectors Technologies
The proposel R\&D collaboration, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied researgh. The main objective of the R\&D programme is to advance technological development and application of Micropattern Gas Detectors.

The invention of Micro-Pattern Gas Detectors (MPGD), in particular the Gas Electron Multiplier (GEM), the Micro-Mesh Gaseous Structure (Micromegas), and more recently other micro pattern detector schemes, offers the potential to develop new gaseous detectors with unprecedented spatial resolution, high rate capability, large sensitive area, operational stability and radiation hardness. In some applications, requiring very large-area coverage with moderate spatial resolutions, more coarse Macropatterned detectors, e.g. Thick-GEMs (THGEM) or patterned resistive-plate devices could offer an interesting and economic solution. The design of the new micro-pattern devices appears suitable for industrial production. In addition, the availability of highly integrated amplification and readout electronics allows for the design of gas-detector systems with channel densities comparable to that of modern silicon detectors. Modern wafer post-processing allows for the integration of gas-amplification structures directly on top of a pixelized readout chip. Thanks to these recent developments, particle detection through the ionization of gas has large fields of application in future particle, nuclear and astro-particle physics experiments with and without accelerators.

The RD51 collaboration involves ~ 350 authors, 59 Universities and Research Laboratories from 20 countries in Europe, America, Asia and Africa. All partners are already actively pursuing either basic- or application-oriented R\&D involving a variety of MPGD concepts. The collaboration established common goals, like experimental and simulation tools, characterization concepts and methods, common infrastructures at test beams and irradiation facilities, and methods and infrastructures for MPGD production.

httip:IIrd51-public.web.cern.ch/RD51-Public/

MPGD Training Session (Feb. $16-20$) \Rightarrow very well attended and a lot of positive feedback received

y/2(1)-clay meeting of

 dififerentWG @ CERN between the RD5I
Collaboration meetings \rightarrow
will continue in the future

The proposed R\&D collaborgtion, RD51, aims at facilitating the development of advanced gas-avalanche detector technologies and associated electronic-readout systems, for applications in basic and applied research. The main objective of the R\&D programme is to advance technological development and application of Micropattern Gas Detectors.
The invention of Micro-Pattern Gas Detectors (MPGD), in particular the Gas Electron Multiplier (GEM), the Micro-Mesh Gaseous Structure (Micromegas), and more recently other micro pattern detector schemes, offers the potential to develop new gaseous detectors with unprecedented spatial resolution, high rate capability, large sensitive area, operational stability and radiation hardness. In some applicztions, requiring very large-area coverage with moderate spatial resolutions, more coarse Macropatyerned detectors, e.g. Thick-GEMs (THGEM) or patterned resistive-plate devices could offer an ifferesting and economic solution. The design of the new micro-pattern devices appears suitable for industrial production. In addition, the availability of highly integrated amplification and readout electronics allows for the design of gas-detector systems with channel densities comparable to that of modern silicon detectors. Modern wafer post-processing allows for the integration of gas-amplification structures directly on top of a pixelized readout chip. Thanks to these recent developments, particle detection through the ionization of gas has large fields of application in future particle, nuclear and astro-particle physics experiments with and without accelerators.

The RD51 collaboration involves ~ 350 authors, 59 Universities and Research Laboratories from 20 countries in Europe, America, Asia and Africa. All partners are already actively pursuing either basic- or application-oriented R\&D involving a variety of MPGD concepts. The collaboration established common goals, like experimental and simulation tools, characterization concepts and methods, common infrastructures at test beams and irradiation facilities, and methods and infrastructures for MPGD production.

Need an information from all RD51 members about the needs in the MPGD technology and electronics for industrialization plans (large volume production)

MPGD Technology / Detector \& Experiment	Total detector size	Timescale

Complimentary Development	Function Required	Timescale

RD51 Organizational Matters

RD51 Logo!

- WG3: Applications survey (update) \rightarrow please respond asap
- Next RD51 Collaboration Meetìng (Oct. 19 - Oct. 21). Discussions about having 2 or 3 parallel session at a time. Suggestions are welcome.
- All RD51 participating institutes can register members as CERN Users (if not done so), get computer accounts etc.

