

Initial Panel

Simulation tool for electroluminescence assessment in gaseous avalanche detectors

C. A. B. Oliveira¹ A. L. Ferreira¹ J. F. C. A. Veloso¹ S. Biagi² R. Veenhof³

¹I3N, Physics Department, University of Aveiro, Aveiro, Portugal

²Physics Department, University of Liverpool, Liverpool, UK

³CERN, Geneva, Switzerland

Propose of the work

Initial Panel

Propose

- Study of the physical processes of light emittion in avalanche detectors
- This information can be usefull for:
 - Dark Matter research
 - $\beta\beta 0\nu$
 - other TPCs

Electron quantum numbers

Initial Panel

- oira
- Propo

Atoms & Molecul

Electron

Quantum numbers LS coupling

Term Symbo

Decay Selection Rules Energy diagram

Model Technique

MPGD

Model apllication Results GEM MHSP

Conclusions

n

- orbital quantum number
- distance from the nucleous
- •
- orbital quantum momentum
- shape of probability distribution
- 0 < l < n-1
- $l = 0, 1, 2, 3, ... \rightarrow s, p, d, f, ...$
- m_l
 - magnetic quantum momentum
 - $-1 < m_1 < 1$
 - I projection along zz'
 - effect of a $\vec{B_z}$
- m_s
 - spin magnetic quantum momentum
 - projection of electron spin along zz' > (3) (3) (3)

Electron Spin-Orbit coupling

Initial Panel

C. Oliveir

Propos

Molecules Electron

Quantum numbe

LS coupling Atom

Xenon
Decay
Selection Rules
Energy diagran

Model

Techniqu Validation

MPGD

Model apllicatio Results GEM MHSP

Conclusion

uture Worl

Total angular momentum

$$\vec{j} = \vec{l} + \vec{s}, j = |l + s|, |l + s - 1|, ..., |l - s|$$

Split levels only for I > 0

Term Symbol defining atomic energy states

Initial Panel

Term Symbol

2S+1L./

- $\vec{S} = \sum_{i} \vec{s_i}$, total spin
- $\vec{L} = \sum_{i} \vec{l_i}$ total orbital momentum $L = 0, 1, 2, 3, 4, 5 \rightarrow S, P, D, F, G, H$

$$L = |\textit{I}_1 + \textit{I}_2, |\textit{I}_1 + \textit{I}_2 - 1, |..., |\textit{I}_1 - \textit{I}_2|$$

- $\vec{J} = \vec{L} + \vec{S}$, total angular momentum
- 2S + 1, multiplicity

Xenon Term Symbols

Initial Panel

Xenon

 $[Kr]3s^23p^6$

$$[Kr]3s^23p^6$$

• S = 0

$$[Kr]3s^23p^54s^1 \sim p^1s^1$$

•
$$S = 0$$

•
$$J = 0, 1, 2$$

$$\bullet$$
 ${}^3P_0, {}^3P_1, {}^3P_2$

•
$$N = \frac{6!}{5!1!} \frac{2!}{1!1!} = 12$$

$$P \rightarrow (2S+1)(2L+1) = 3$$

•
$${}^{3}P \rightarrow (2S+1)(2L+1) = 9$$

Xenon Term Symbols

Initial Panel

C. Oliveir

Propos

Molecules
Electron
Quantum numbers
LS coupling

Atom
Term Symbol

Term Symb Xenon

Xenor Decay

Selection Rul Energy diagra Excimers

Model

Technique Validation

MPGD:

Model apllication Results GEM MHSP

Conclusions

$[Kr]3s^23p^54p^1 \sim p^1p^1$

•
$$S = 0$$

•
$$L = 0, 1, 2$$

$$\bullet$$
 ${}^{1}S_{0}, {}^{1}P_{1}, {}^{1}D_{2}$

$$\bullet$$
 $L=0$

•
$$J = 0, 1, 2$$

• ${}^{3}P_{0}, {}^{3}P_{1}, {}^{3}P_{2}$

$$\bullet$$
 $^3D_1, ^3D_2, ^3D_3,$

$$N = \frac{6!}{5!1!} \frac{6!}{5!1!} = 36$$

$$^{1}S \rightarrow (2S+1)(2L+1)=1$$

•
$${}^{1}P \rightarrow (2S+1)(2L+1) = 3$$

• ${}^{1}D \rightarrow (2S+1)(2L+1) = 5$

•
$${}^{3}S \rightarrow (2S+1)(2L+1) = 3$$

2
3 \rightarrow (23 + 1)(2L + 1) = 3

•
$${}^{3}P \rightarrow (2S+1)(2L+1) = 9$$

•
$$^3D \rightarrow (2S+1)(2L+1) = 15$$

Radiative Decay Selection Rules

Initial Panel

C. Oliveir

Propos

Atoms & Molecule

Electron
Quantum numbers
LS coupling

Atom Term Symbol Xenon

Decay
Selection Rules
Energy diagram
Excipare

Model
Technique
Validation

MPGDs

Model apllication Results GEM MHSP

Conclusi

uture Worl

$$\Delta L = \pm 1$$

•
$$\Delta M = 0, \pm 1$$

•
$$\Delta M = 0 \rightarrow \text{linear polarized light}$$

•
$$\Delta M = \pm 1 \rightarrow$$
 cicurlarly polarized light

$$\bullet$$
 $\Delta S = 0$

•
$$\Delta J = 0, \pm 1, J = 0 \rightarrow J = 0$$
 is forbidden

Energy diagram

Initial Panel

C. Olivei

Propos

Molecules Electron

Quantum numbers

Term Symb

Decay
Selection Rules
Energy diagram

Model

Techniqu Validation

MPGD

Model apllicatio
Results
GEM
MHSP

Conclusion

uture Worl

Excimers Formation & Decay

Initial Panel

C. Oliveira

Propose

Molecules
Electron
Quantum numbers

Quantum numbers
LS coupling
Atom
Term Symbol

Xenon
Decay
Selection Rules
Energy diagram
Excimers

Model

Technique Validation

MPGDS Model apllication Results

Results
GEM
MHSP

Conclusion

Future Work

Eximer formation (3 body collision)

$$R^* + 2R \rightarrow R_2^{**} + R$$

Direct radiative decay

$$R_2^{**} \rightarrow 2R + h\nu$$

 3 body collision + radiative decay

$$R_2^{**} + R \rightarrow R_2^* + R$$

$$R_2^* \rightarrow 2R + h\nu$$

Simulation model

Initial Panel

C. Oliveir

Propos

Molecules
Electron
Quantum numbers

LS coupling Atom Term Symbol Xenon

Decay Selection Rules Energy diagram Excimers

Technique

Validation

Model apllicatio

GEM MHSP

Conclusions

- 1 excited state -> 1 VUV photon of $\varepsilon_{\textit{sci}} = 7.2eV$
- X sections from Magboltz
- Microscopic technique of Garfield

Validation Uniform field

Initial Panel

Validation

$$ullet$$
 $1<\left(rac{E}{
ho}
ight)<6$ Vcm^{-1} $torr^{-1}$ (only elastic and excitation collisions)

•
$$Q_{exc}$$
, Q_{sci} , $\frac{Y}{P}$

 good agreement with former simulation work and experimental data

(F. P. Santos et al, JPhysD-27(1994)42 & Monteiro et al, JInst-2(2007)5001)

Model apllied to MPGD's GEM & MHSP

Initial Panel

C. Oliveir

Propos

Molecules
Electron

Quantum numbe

Term Symbol
Xenon
Decay
Selection Rule

Energy diag Excimers

Technica

Techniqu Validatio

MPGE

Model apllication
Results
GEM

Conclusi

Euturo Worl

- Ansys field maps
- $z_{start} = 250 \mu m$
- random ε_{start} (Magboltz)
- random (x, y)
- $N_e = f(V, p)$
- $N_{exc} = f(V, p)$

Results **GEM - Scintillation Yield**

 $E_{drift} = 0.5 kV cm^{-1}$ $E_{ind} = -0.1 kV cm^{-1}$

Initial Panel

GEM

- Similar behaviour as experimental data (Monteiro et al, PLB)
- Little differences are being studied
 - low V_{GEM} : $N_{exc,1/2^+} \sim N_{exc,1/2^-}$ (photon block)
 - high V_{GEM} : charging up ??

Results GEM - Racio between light and charge

Initial Panel

C. Oliveir

Propos

Molecules

Electron

Quantum numbers

LS coupling
Atom

Xenon

Decay

Selection Rules

Energy diagran

Model Technique

MPGDs Model apllication Results

GEM MHSP

Conclusi

Future Work

- $N_{exc} >> N_e$
- $\frac{N_{exc}}{N_e}$ increases with p

(λ decreases -> less $\varepsilon_{electron}$ -> P_{ion} decreases)

Results MHSP - Scintillation Yield

Initial Panel

MHSP

- Bigger differences
- More complex structure
- E_{max} estimation ??

Conclusions

Initial Panel

C. Olivei

Propos

Atoms &
Molecules
Electron
Quantum numbers
LS coupling
Atom

Atom
Term Symbol
Xenon
Decay
Selection Rules
Energy diagram
Excimers

Model Technique Validation

MPGDs

Model apllication
Results
GEM
MHSP

Conclusions

 A simulation tool based in Magboltz / Garfield was developed to follow produced excited states in gas avalanches

- Y was accessed in GEM same behaviour as experimental data
- $\frac{N_{exc}}{N_e}$ increases with p
- $N_{exc} >> N_e$

Light is an addicional information which can be usefull

Future Work

Initial Panel

C. Oliveira

Propos

Atoms & Molecule

Electron

Quantum numbers
LS coupling

Atom

Xenon
Decay
Selection Rules
Energy diagram

Model Technique Validation

MPGDs

Model apllication
Results

GEM

MHSP

Conclusions

Optimize simulation parameters (ε_{max}, ...)

- Understanding of differences between simulation and experimental results
- Consider charging-up effect in dielectric surface
- Apply the model to other microstructures (THGEM, THMHSP, Micromegas)
- Other properties will be accessed
 - Light position distribution (isotropic emittion, atoms diffusion)
 - Light signal (cascade radiative decay processes between states)
- Gas mixtures (Penning tranfers, ...)
- Use neBEM
- Interfacing with GEANT4

Initial Panel

Future Work

Thank you!!

