Penning transfers: survey of available data, life-time of excited states, pressure dependence Ozkan SAHIN Uludag University Physics Department Bursa -TURKEY #### Introduction >Mixtures used in proportional counters: Ne, Ar, He + Methane, Ethane, Isobutane ... Non-ionising interactions: UV photons emitted from excited states \triangleright High gas gains (up to 10^6): before reaching a continues discharge ## **Penning effect** Excited noble gas atoms can transfer their energy: if they do not decay before collisions !!! **Excitation energy > ionisation energy of admixture:** - Number of the generated electron-ion pairs increase: - low W and F in the mixtures improvement in the detector energy resolution ## **Investigated Penning gas mixtures** - 1- Argon Ethane - 2- Argon Isobutane - 3- Argon Propane - 4- Argon Methane - 5- Argon Acetylene - $6-Argon-CO_2$ - 7- Argon Xenon #### Schematic view of the energy levels for Argon I ## Methodology - ➤ A computer program has been developed: single wire proportional counter - Gas gain: $$G = e^{\int_{r_a}^{r_b} \alpha(E(r)) * dr}$$ \triangleright Electric field strength E(r) at the radius r: $$E(r) = \frac{V}{r \log(r_a / r_c)}$$ ## **Magboltz:** - wagboltz: ≥ To find Townser - Magboltz does r - But, it gives deta and ionisations S - level exc. $(11.55 \text{ eV}) \longrightarrow 1\text{s}$ excited levels P - level exc. (13.0 eV) \longrightarrow 2p excited levels D - level exc. (14.0 eV) ____ combinations of s, p, d excited levels ## **A**Penning Using this information a *Penning-corrected* ionization coefficient $(\alpha_{Penning})$ for *all energetically allowed* Penning transfers can be given by: $$\alpha_{\text{Penning}} = \alpha \frac{(f_{\text{ion(Ar)}} + f_{\text{ion(admix.)}} + \sum_{i} (P(i) * f_{\text{exc_Ar}}(i))}{(f_{\text{ion(Ar)}} + f_{\text{ion(admix.)}})}$$ Here Penning transfer probability P is defined as the fraction of the energy in the excited states that will cause further ionisations by the Penning processes. Since this energy transfer fraction is *a priori not known*, the experimental data are used as a guide. P is found by a fitting procedure that achieves the matching between the gains calculated from $\alpha_{Penning}$ and the measured gains. #### Photon feedback term **≻**Over-exponential growth at high potentials: secondary avalanches due to insufficient quenching of UV photons including photon feedback $$G_{\text{tot}} = \frac{G}{1 - P_{\gamma} * G}$$ $P\gamma$ is the probability that an ionisation in the primary avalanche produces a photon which leads to a secondary avalanche. #### **Argon** – **Methane** mixtures $I_{\text{Methane}} = 12.99 \text{ eV}$ Possible Penning Tranfers: Ar^* (P, D level exc.) \longrightarrow CH₄ Ar + 2%, 5%, 10% Methane #### **Argon** – **Ethane** mixture $$I_{E \text{thane}} = 11.52 \text{ eV}$$ Possible Penning Tranfers: Ar^* (S, P, D level exc.) $\longrightarrow C_2H_6$ #### **Argon** – **Isobutane** mixture Possible Penning Tranfers: Ar^* (S, P, D level exc.) \longrightarrow iC_4H_{10} #### **Argon – Propane mixtures** $I_{\text{Propane}} = 10.95 \text{ eV}$ Possible Penning Tranfers: Ar* (S, P, D level exc.) \longrightarrow C₃H₈ Ar + 1%, 2%, 5%, %10 Propane #### **Argon** – **Acetylene** mixtures $I_{\text{Acetylene}} = 11.42 \text{ eV}$ Possible Penning Tranfers: Ar^* (S, P, D level exc.) \longrightarrow C_2H_2 Ar + 0.5%, 2%, 5%, 10% Acetylene #### **Argon** – CO₂ mixtures $I_{\rm CO2} = 13.77 \text{ eV}$ Possible Penning Tranfers: Ar* (only D level exc.) \longrightarrow CO₂ Ar + 5%, 10%, 15%, 20% CO₂ #### **Argon** – **Xenon** mixtures $I_{\text{Xenon}} = 12.13 \text{ eV}$ Possible Penning Tranfers: Ar^* (P, D level exc.) \longrightarrow Xe Ar + 5%, 10%, 15%, 20% Xe ## **Concentration dependence** - > Probabilities increase with increasing percentage of the admixture. - > High probabilities for Acetylene mixtures. - \triangleright The highest probabilities for CO_2 admixtures? - ➤ Decrease for 20% CO₂ concentration ? X sections? ## Concentration dependence (continue) - ➤ Decrease for 10% Propane concentration? - ➤ High probabilities for Xe admixtures ? - ➤ Decrease for 20% and 30% Xe concentrations? X sections? ## Pressure dependence ## Pressure dependence (continue) - Since the time between collisions decreases by increasing pressure, the number of ionising collisions with excited argon atoms increases. As a consequence, the Penning transfer probabilities increase at higher pressures. - We assume that the transfer probability is related to the chance that an excited atom (or molecule) meets a recipient before it decays spontaneously in the t_{decay} time. - > We are trying to find correct fit function for pressure dependence. - We have already calculated mean collision times t_{coll} of argon with investigated admixtures (*from knetic theory*). - We have also extracted the decay modes and lifetimes for each excited state of argon (using approximately 40 papers published in this topic). #### Lifetime of the excited states | Levels | | Energy | Lifetimes [ns] | | |------------------------|----------------------|--------|-------------------|-------------------| | jK | Paschen | [eV] | Experimental | Theoretical | | 4s (3/2) ₁ | 1s ₄ | 11.624 | 8.44 ^a | 8.60ª | | 4s' (1/2) ₁ | 1s ₂ | 11.828 | 2.14 ^a | 2.15 ^a | | 4p (1/2) ₁ | 2p ₁₀ | 12.907 | 32.4 ^b | 32.2° | | 4p (5/2) ₃ | $2\mathbf{p}_9$ | 13.076 | 25.3 ^b | 25.2° | | 4p (5/2) ₂ | $2\mathbf{p_8}$ | 13.095 | 26.8 ^b | 27.0° | | 4p (3/2) ₁ | $2\mathbf{p}_7$ | 13.153 | 24.8 ^b | 25.8° | | 4p (3/2) ₂ | $2\mathbf{p}_{6}$ | 13.172 | 24.4 ^b | 25.3° | | 4p (1/2) ₀ | $2\mathbf{p}_5$ | 13.273 | 21.6 ^b | 22.0° | | 4p' (3/2) ₁ | $2\mathbf{p_4}$ | 13.283 | 26.4 ^b | 26.0 ^c | | 4p' (3/2) ₂ | $2\mathbf{p}_3$ | 13.302 | 25.0 ^b | 25.5° | | 4p' (1/2) ₁ | $2\mathbf{p}_2$ | 13.328 | 24.2 ^b | 24.8° | | 4p' (1/2) ₀ | $2\mathbf{p}_1$ | 13.480 | 19.5 [₺] | 18.5° | | 3d (1/2) ₀ | $3d_6$ | 13.845 | | 54.2ª | | 3d (1/2) ₁ | $3d_5$ | 13.864 | 94.0 ^a | 40.8ª | | 3d (7/2) ₄ | 3d ₄ ' | 13.979 | 72.0 ^d | 52.0ª | | 3d (7/2) ₃ | $3d_4$ | 14.013 | 55.0 ^d | 50.8ª | | 3d (3/2) ₂ | $3d_3$ | 13.903 | 3.48 ^a | 57.6ª | | 3d (3/2) ₁ | $3d_2$ | 14.153 | 40.0 ^d | 9.0 ^a | | 3d (5/2) ₂ | 3d ₁ " | 14.063 | 68.0 ^d | 49.9ª | | 3d (5/2) ₃ | $3d_1'$ | 14.099 | 54.0 ^d | 49.0ª | | 3d' (5/2) ₂ | 3s ₁ '''' | 14.214 | 51.9 ^e | 49.9ª | | 3d' (5/2) ₃ | 3s ₁ "' | 14.236 | | 49.7ª | | 3d' (3/2) ₂ | $3s_1$ " | 14.234 | 49.9 ^e | 48.3ª | | 3d' (3/2) ₁ | 3s ₁ ' | 14.304 | 53.3 ^e | 3.36ª | | 5s (3/2) ₂ | 2s5 | 14.068 | | 42.1ª | |------------------------|--------------------|---------|--------------------|--------------------| | 5s (3/2) ₁ | $2s_4$ | 14.090 | 17.5ª | 4.74 ^a | | 5s' (1/2) ₀ | $2s_3$ | 14.241 | 61.0 ^d | 43.9ª | | 5s' (1/2) ₁ | $2s_2$ | 14 2.55 | 10.1 ^a | 3.2ª | | 5p (1/2) ₁ | $3p_{10}$ | 14.464 | 170.0 ^f | 166.0 ^f | | 5p (5/2) ₃ | $3p_9$ | 14.499 | 150.0 ^f | 122.0 ^f | | 5p (5/2) ₂ | $3p_3$ | 14.506 | 165.0 ^f | 129.0 ^f | | 5p (3/2) ₁ | $3p_7$ | 14.525 | 170.0 ^f | 109.0 ^f | | 5p (3/2) ₂ | $3p_{\delta}$ | 14.529 | 175.0 ^f | 192.0 ^f | | 5p (1/2) ₀ | $3p_5$ | 14.588 | 95.0 ^f | 73.0 ^f | | 5p' (3/2) ₁ | $3p_4$ | 14.681 | 180.0 ^f | 127.0 ^f | | 5p' (3/2) ₂ | $3p_3$ | 14.688 | 175.0 ^f | 123.0 ^f | | 5p' (1/2) ₁ | $3p_2$ | 14.687 | 170.0 ^f | 123.0 ^f | | 5p' (1/2) ₀ | 3p _l | 14.738 | 80.0 ^f | 83.0 ^f | | 4d (1/2) ₀ | 4d, | 11.691 | 120.0 ^g | 124.0 ⁵ | | 4d (1/2) ₁ | 4d ₅ | 14.711 | 74.0 ^a | 113.0³ | | 4d (7/2) ₄ | 4d ₄ ' | 14.757 | 226.0 ^g | 230.0 ^g | | 4d (7/2.) ₃ | $4d_{4}$ | 14.781 | 285.0 ^g | 297.0 [§] | | 4d (3/2) ₂ | $4d_3$ | 14.743 | 147.0 ^g | 384.0 ⁸ | | 4d (3/2) ₁ | $4d_2$ | 14.859 | 200.0 ^t | 234.0 ^t | | 4d (5/2) ₂ | 4d ₁ " | 14.809 | 360 0 ^f | 348 0 ^f | | 4d (5/2) ₃ | $4d_1$ ' | 14.834 | 350.0 ^f | 335.0 ^f | | 4d' (5/2) ₂ | 4s ₁ "" | 14.955 | 295.0 ^r | 275.0 ^r | | 4d' (5/2) ₃ | 4s ₁ "" | 14.972 | 310.0 ^g | 317.0 ⁸ | | 4d' (3/2) ₂ | $4s_1$ " | 14.953 | 223.0 ^g | 259.0 [§] | | 4d' (3/2) ₁ | 4s ₁ ' | 15.004 | 71.9 ^h | 3.78° | ## Lifetime of the excited states (continue) | Levels | | Energy | Lifetimes [ns] | | |-------------------------|-------------------------|--------|-----------------------------|---------------------------------------| | jK | Paschen | [eV] | Experimental | Theoretical | | 6s (3/2) ₂ | 3s ₅ | 14.839 | 72.0 ^f | 92.0 ^f | | 6s (3/2) ₁ | $3s_4$ | 14.848 | | 5.73° | | 6s' (1/2) ₀ | 3s ₃ | 15.014 | 75.0 [£] | 90.0 ^f | | 6s' (1/2) ₁ | 3s ₂ | 15.022 | | 32.ďª | | 4f (5/2) _{2,3} | 4Y _{2,3} | 14.907 | | 47.0° - 51.0° | | 4f (7/2) _{1,2} | $4X_{1,2}$ | 14 902 | | 43.3 ^a - 48.3 ^a | | 4f (9/2) _{4,5} | $4V_{4,5}$ | 14.904 | | 46.9 ^a - 45.4 ^a | | 4f (7/2) _{3,4} | 4U _{3,4} | 14.909 | | 49.3° - 49.6° | | 4f (5/2) _{2,3} | $4Z_{2,3}$ | 15.083 | | 46.6° - 50.5° | | 4f (7/2) _{3,4} | 4W _{3,4} | 15.083 | | 46.7ª - 47.6ª | | 6p (1/2) ₁ | $4p_{10}$ | 15.011 | 324.0 ^f | 325.0 ^f | | бр (5/2) ₃ | $4p_9$ | 15.023 | 282.0 ¹ | 276.0ª | | бр (5/2) ₂ | $4p_8$ | 15.026 | 266.0 ^j | 284.0 ^j | | бр (3/2) ₁ | $4p_7$ | 15.034 | 2 8 0.0 ^j | 296.0 ^j | | 6p (3/2) ₂ | 1p ₆ | 15.036 | 257.7 [†] | 257.0 ⁱ | | 6p (1/2) ₀ | $4p_5$ | 15.060 | 171.0 ^f | 151.0 ^f | | 6p' (3/2) ₁ | $4p_4$ | 15.202 | | 263.0 ^a | | 6p' (3/2) ₂ | $4p_3$ | 15.205 | 255.2 ^j | 256.0 ^j | | 6p' (1/2) ₁ | $4p_2$ | 15.201 | 266.7 ^j | 250.0 ^j | | бр' (1/2) ₀ | 4p ₁ | 15.224 | 190.0 ^f | 197.0 ^f | | 5d (1/2) ₀ | 5 d ₆ | 15.101 | 116.0 ^g | 127.0 ^g | | 5d (1/2) ₁ | 5 d ₅ | 15.118 | 73.2 ^h | 111.0° | | 5d (7/2) ₄ | 5d ₄ ' | 15.131 | 255.0 ^g | 218.0 ^g | |------------------------|---------------------------|--------|--------------------|--------------------| | 5d (7/2) ₃ | $5d_4$ | 15.146 | 320.0 ^g | 337.0 ^g | | 5d (3/2) ₂ | $5d_3$ | 15.137 | 205.0 ^g | 437.0 ^g | | 5d (3/2) ₁ | $5d_2$ | 15.190 | | 2.69 | | 5d (5/2) ₂ | 5 d ₁ " | 15.161 | 330.0 ^g | 582.0 ^g | | 5d (5/2) ₃ | 5 d ₁ ' | 15.167 | 475.0 ^g | 592.0 ^g | | 5d' (5/2) ₂ | 5s ₁ "" | 15.313 | 227.0 ^g | 235.0 ^g | | 5d' (5/2) ₃ | 5s ₁ "" | 15.319 | 247.0 ^g | 275.0 ^g | | 5d' (3/2) ₂ | 5s ₁ '' | 15.296 | 134.0 ^g | 146.0 ^g | | 5d' (3/2) ₁ | 5s ₁ ' | 15.351 | 87.8 ^h | 0.97 ^a | | 7s (3/2) ₂ | 4s ₅ | 15.181 | 133.3 ⁱ | 99.3ª | | 7s (3/2) ₁ | 4s ₄ . | 15.185 | 59.7 ⁱ | 15.1ª | | 7s' (1/2) ₀ | $4s_3$ | 15.358 | | 99.2ª | | 7s' (1/2) ₁ | $4s_2$ | 15.359 | 38.8 ⁱ | 15.7ª | | 7p (3/2) ₂ | 5p6 | 15.285 | 367.2 ⁱ | | | 7p (1/2) ₀ | 5p ₅ | 15.298 | 309.1 ⁱ | | | 6d (1/2) ₀ | 6d₀ | 15.308 | 167.0 ^g | 162.0 ^g | | 6d (1/2) ₁ | 6d ₅ | 15.313 | 281.4 ^k | | | 6d (7/2) ₄ | 6d ₄ ' | 15.331 | 297.0 ^g | 267.0 ^g | | 6d (7/2) ₃ | $6d_4$ | 15.346 | 500.0 ^g | 572.0 ^g | | 6d (5/2) ₃ | $6d_1$ ' | 15.353 | 295.0 ^g | 803.0 ^g | | 6d' (5/2) ₂ | 6s ₁ "" | 15.512 | 295.0 ^g | 299.0 ^g | | 6d' (3/2)2 | 6s ₁ '' | 15.506 | 210.0 ^g | 224.0 ^g | | 8s (3/2) ₂ | 5s ₅ | | 256.0 ⁱ | | | 7d (1/2) ₀ | 7d₅ | 15.439 | 116.2 ^h | | | 7d (1/2) ₁ | $7d_5$ | 15.443 | 212.0 ^k | | | 7d (7/2) ₄ | 7d ₄ ' | 15.450 | 353.0 ^g | 363.0 ^g | | 7d (7/2) ₃ | $7d_4$ | 15.455 | 309.7 ^h | | # Thank you ...