Single-electron response and energy resolution of a Micromegas detector

T. Zerguerras*, B. Genolini, V. Lepeltier†, J. Peyré, J. Pouthas, P. Rosier

* E-mail: zerguer@ipno.in2p3.fr

Web site: http://ipnweb.in2p3.fr/~detect/

Energy resolution in gaseous detectors

Two contributions:

- Primary ionisation fluctuations
 - → can be quantified by the Fano factor (values : 0.1 up to 0.4)
- Gas gain fluctuations during the multiplication process

Two probability distributions:

- Exponential (Furry distribution)
- Polya (generalisation proposed by Byrne):

$$P(Q) = C_0 \frac{(1+\theta)^{1+\theta}}{\Gamma(1+\theta)} \left(\frac{Q}{\overline{Q}}\right)^{\theta} \exp \left[-(1+\theta)\frac{Q}{\overline{Q}}\right]$$

 θ : parameter of the Polya, related to the relative gain variance f by : $f = 1/(1+\theta)$

Measurement of the Single-Electron Response (SER) is a direct method to determine gas gain fluctuations.

SER in single GEM

Ne 50% DME 50%

Gain: 7.9 10³

Polya distribution

$$\theta = 2.2 \longrightarrow f = 0.31$$

R. Bellazzini et al., NIM A 581 (2007) 246 GEM-MIGAS in GEM mode He 85% iC₄H₁₀ 15% Gains of a few 10⁴

Polya distribution

 $1.4 \le \theta \le 2.5 \quad \longrightarrow \quad 0.3 \le f \le 0.4$

Jamil A. Mir et al, IEEE Trans. Nucl. Sci. NS-55 (2008) 2334.

SER in stack of GEMs

SER in Micromegas

Micromegas:

Conversion zone: 5 mm Amplification gap: 100 µm

He 90% iC₄H₁₀ 10%

Gain ≈ 10⁶

(Electronic noise: 4 10⁴ e⁻

RMS)

J. Derré et al., NIM A 449 (2000), 314.

MPGD: new detectors for Nuclear Physics

TPC for detection of 2p radioactivity

Implantation in the gas volume
Gas: P10 from 0.5 up to 1.03 atm
X-Y detector
Z by time projection
3D tracks of the 2 protons

B. Blank et al., NIM B 266 (2008) 4606

MAYA @ GANIL, France

TPC principle

Gas: target and detection medium 3D reconstruction of nuclear reactions MWPC for the amplification

C.E. Demonchy et al., NIM A 573 (2007) 145

→ R&D ACTive TARget detector:

MPGD for amplification

Pressure: 100 mbars up to 2bars

Study with a laser test bench @ Orsay

- Production of an intensity and position monitored electron source using a 337 nm wavelength laser
- -Focused laser beam size ≤ 100 μm

→ T. Zerguerras et al. , NIM A 581 (2007) 258

Laser
V
electrode

Xray
Drift
gap

Mesh
Amplification
gap

Anode PCB

<u>**Drift electrode:**</u> Quartz window with a 0.5 nm thick Ni-Cr layer

Mesh: 333lpi Buckbee-Mears[©] 70% optical transmission Nickel

Measurements with a set of 9 pads (3*3), size of 4*4mm²

Ne 95% iC₄H₁₀ 5% @ 1 bar

Drift field: 1kV/cm

Electronics:

Pads: Gassiplex chips (noise: 2 000 e⁻ RMS)

Mesh: gain 100 voltage amplifier

Trigger:

- Mesh signal in ⁵⁵Fe source mode.
- Photonis[©] XP2282B photomultiplier anode signal in laser mode

Gas gain calibration

Method:

- Measurement with the ⁵⁵Fe source @ 440V.
- Gain calibration curve completed with the laser, for two values of the number of primary electrons N_0 .

Single-electron response

Laser intensity light attenuated by a factor of 2 000. Rate of non-zero events: 7% Measurement on the central pad

Polya distribution adjusted on data

(e) SER Ne 95% iC₄H₁₀ 5% - V_{Mesh}=510V

- Gain 10-15% lower than expected from gain calibration curve extrapolation.

- Relative gain variance increases 102

Unquenched photon effect

Energy resolution with the laser

$$V_{Mesh} < 500V$$

Measurement on the central pad

$$\frac{\sigma_Q}{\overline{Q}} = \sqrt{a^2 + \frac{f + F_{\text{las}}}{\overline{N_0}}}$$

 a: related to the energy resolution of the laser

 F_{las} : effective Fano factor associated with the electron emission from the metal.

T. Zerguerras- 3rd RD51 Collaboration Meeting, Kolympari, Crete, Greece June 16-17 2009

Energy resolution with a ⁵⁵Fe source

$$\frac{\sigma_Q}{\overline{Q}} = \sqrt{(f+F)\frac{W}{\mathcal{E}}}$$

Selection of events with a signal induced only on the central pad

Very low counting rate(10 events per minute)

Energy resolution: 6.4% RMS

Upper limit on the Fano factor deduced: $F \le 0.37$

Conclusions

- Gas gain fluctuations in MPGDs are lower than in MWPC (0.7) for the same gain values.
- The present experimental method can be used for all kind of MPGDs and allows direct SER measurements down to gains of a few 10⁴. It could help provide experimental data for simulation software improvement (see R. Veenhof's talk @MPGD 2009)
- Study of the energy resolution as a function of the primary number of electrons can be performed.
- From the relative gain variance *f* deduced from the SER, the Fano factor can be estimated.

Present work to be published in NIM A.

Perspectives:

- Spatial resolution
- Gas gain fluctuations for different pressures and in other gas mixtures