

Time Projection Chamber with Triple GEM and Pixel Readout

Jochen Kaminski^a

^a Universität Bonn, Germany

Timepix

256 * 256 pixel pixel size: 55 * 55 μm²

chip dimensions: 1.4 * 1.4 cm²

Each pixel can be set to one of these modes:

- hit counting
- TOT = time over threshold gives integrated charge
- time between hit and shutter end
- hit/no-hit

current running condition:

checker-board pattern of TOT and Time

Timepix modes

exit analog part

Shutter

ToT: charge integration

Timepix mode: measures time from signal to end of shutter

Medipix mode: counts hits

1-hit-Mode binary

Current readout options

single Chips and Quadboards have been built sofar:

MUROS: work good with single chips + Quadboards, built by NIKHEF, not available/supported anymore

<u>USB-device</u>: built and supported by University of Prague
USB-device 1.1 could be made to work with single chips
USB-device 1.22 make Timepix Chip forget its DAC
Setting after 1 event, workaround exists

→ possibly the layout with flatband cable introduces delay or signal decay

Readout software: <u>Pixelman</u> 1.7.2, 1.9.1, newest version does not support external shutter Runs under Windows – communication with rest of DAQ (Linux) is problematic

New FPGA-based Readoutsystem by

University of Mainz
Mainz is designing and building a new FPGA-based

readout for Timepix chips.

- Readout with maximum speed (100MHz)
- Connection to PC with Gigabit Ethernet
- FPGA:
 - De-/serialization of data streams
 - Conversion CMOS LVDS
 - Firmware in VHDL
- Software and firmware are in good shape but some missing functionality until now
- Serialization and ethernet communication are correct
- Not at full speed yet (needs matching of clock to delayed data stream in Timepix)
- Chip can be read out, test with detector at Bonn soon

XYLINXdevelopment board

GOSSIPO-3

<u>Test chip</u> to evaluate:

- a preamp-shaper-discriminator circuitry
- the performance of a low-power TDC-per-pixel circuit with a resolution sub 1 ns.
- an on-chip temperature sensor is being designed.

Specifications

Front-end: - input parasitic capacitance < 10 fF

- input noise 70 e-
- threshold 350 e-
- fast response 10ns (rise-time)

drift time measurements: - event clock 40MHz

- accuracy (bin size) 1.8ns (4-bit @ 25ns)

- range 6.4 s (8-bit @ 25ns)

ToT measurements: - accuracy 25ns

- range 400ns (4-bit @ 25ns)

