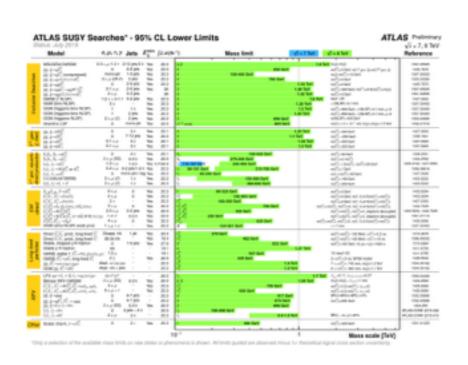
Natural Heavy Supersymmetry

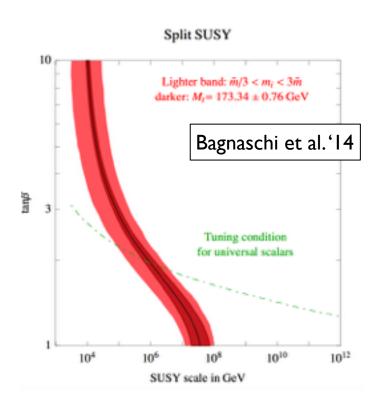
Brian Batell
University of Pittsburgh


with G. Giudice and M. McCullough - arXiv: 1509.00834

Supersymmetry

- Naturalness
- Unification
- Dark matter
- Extension of spacetime symmetry
- Quantum gravity, string theory

Is SUSY unnatural?

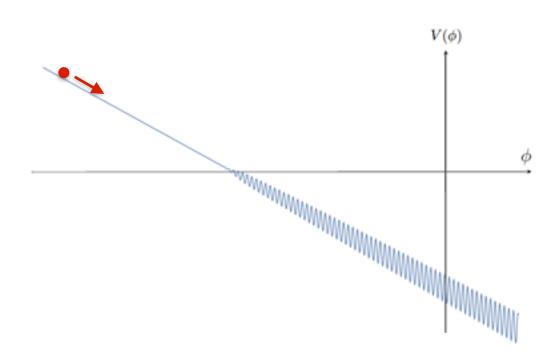

Where are the superpartners?

Arvanitaki, Craig, Dimopoulos, Villadoro Arkani-Hamed, Gupta, Kaplan, Weiner, Zorawski Bagnaschi, Giudice, Slavich, Strumia

..

Higgs mass perhaps suggests split or high scale SUSY

Lack of deviations in EWPT, flavor violation, CP-violation, B,L, ...


More generally ...

Is the Higgs natural?

If yes, then where is the New Physics?

Relaxion

[Graham, Kaplan, Rajendran '15]

How large can the cutoff be?

In the minimal model, constraints from Vacuum Energy and Classical Rolling imply:

$$M^2/M_P < H_i < (\Lambda^4/f)^{1/3}$$

$$M < \left(\frac{\Lambda^4 M_P^3}{f}\right)^{1/6} \simeq 10^7 \, \text{GeV} \left(\frac{10^9 \, \text{GeV}}{f}\right)^{1/6}$$

- Relaxion: good in the IR, bad in the UV(???)
 - Address little hierarchy
 - UV cutoff 10⁵⁻⁹ GeV depending on model
 - Requires UV completion to protect Higgs mass at all scales

- SUSY: bad in the IR, good in the UV
 - No signs of superpartners, Higgs mass suggests heavy scalars
 - Can still address the big hierarchy problem
 - Other UV motivations unification, quantum gravity, etc.

Combine these frameworks

Natural Heavy Supersymmetry

[BB, Giudice, McCullough]

In addition to a UV completion of the relaxion, we find:

- A novel and economical theory of SUSY breaking
- Relaxation of the SUSY breaking scale
- A natural theory of heavy scalars Mini-Split SUSY

Setup

- srelaxion relaxion relaxino
- MSSM fields + single chiral multiplet: $S = \frac{s+ia}{\sqrt{2}} + \sqrt{2}\theta \, \tilde{a} + \theta^2 F$
- PQ Shift symmetry: $S \to S + i\alpha$, $(a \to a + \sqrt{2\alpha})$
- General EFT below scale f:

$$\mathcal{L} = \int d^4\theta \left[f^2 K(S+S^\dagger) + Z_i (S+S^\dagger) \, \Phi_i^\dagger e^V \Phi_i \right] + \left[\int d^4\theta \, U(S+S^\dagger) \, e^{-qS} H_u H_d \right.$$

$$+ \int d^2\theta \left(C_a(S) \, \text{Tr} \mathcal{W}_a \mathcal{W}_a + \mu_0 \, e^{-qS} H_u H_d + \text{Yukawa int.} \right) + \text{h.c.} \right],$$

$$C_a(S) = \frac{1}{2g_a^2} - \frac{i \, \Theta_a}{16\pi^2} - \frac{c_a \, S}{16\pi^2}.$$

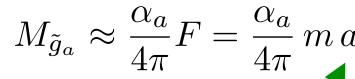
SUSY and PQ symmetry preserved, axion potential vanishes, no dynamical evolution - must break PQ symmetry...

Breaking the shift symmetry

Add explicit soft breaking (axion mass)

$$W/f^2 = \frac{m}{2} S^2 \qquad \mathscr{L}/f^2 = \kappa^{-1}(s) F^* F + m \left[\left(\frac{s+i a}{\sqrt{2}} \right) F + \text{h.c.} \right]$$

 $F \approx ma$


The relaxion breaks SUSY

- As the relaxion evolves, it scans SUSY breaking
- Scanning soft masses arise from PQ symmetric couplings
- No additional PQ breaking couplings to Higgs needed (unlike GKR)

Scanning of SUSY breaking

Gaugino Mass

$$-\frac{c_a g_a^2}{32\pi^2} \int d^2\theta \, S \, W_a \, W_a \qquad \longrightarrow \qquad M_{\tilde{g}_a} \approx \frac{\alpha_a}{4\pi} F = \frac{\alpha_a}{4\pi} \, m \, a$$

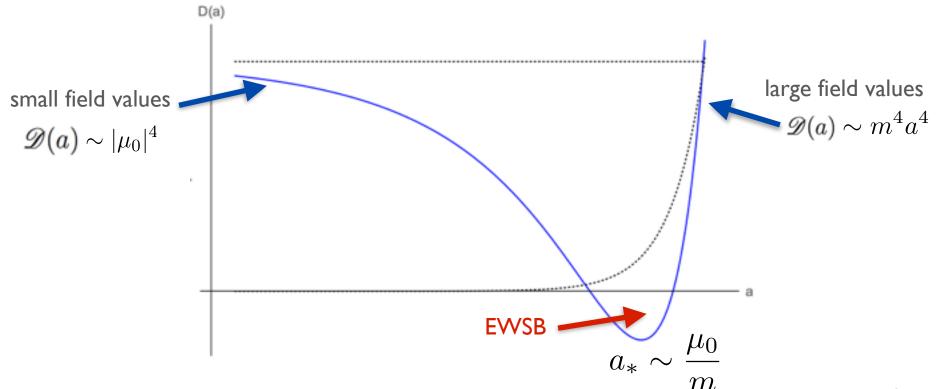
soft masses scan during relaxion evolution

Scalar Mass

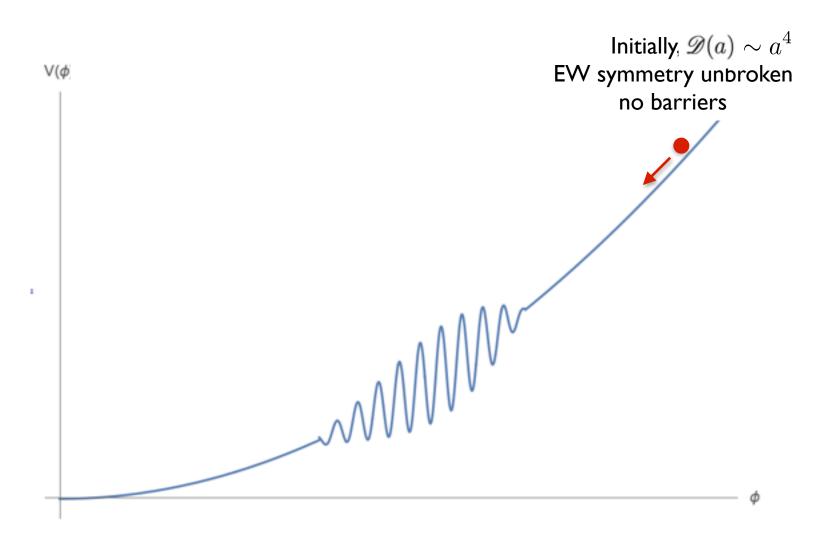
$$\frac{f^2}{M_*^2} \int d^4\theta (S + S^{\dagger})^2 \Phi_i^{\dagger} \Phi_i \qquad \longrightarrow \qquad \tilde{m}_i \approx \frac{f}{M_*} \, m \, a$$

$$\tilde{m}_i pprox rac{f}{M_*} \, m \, a$$

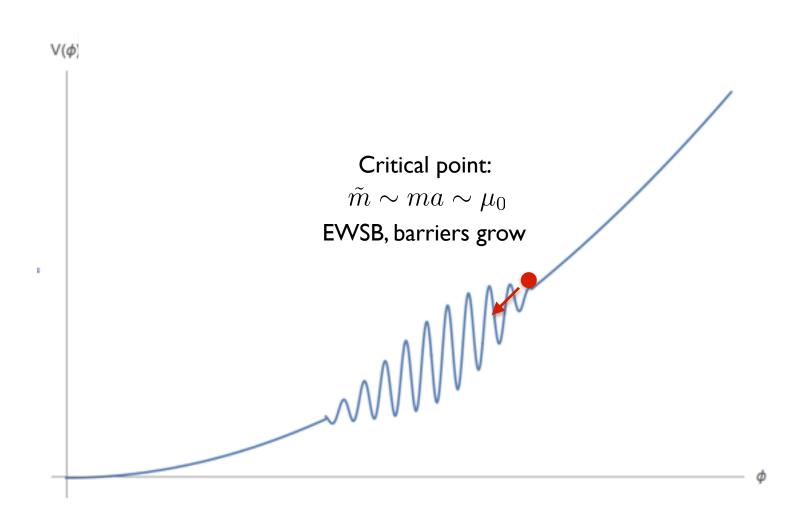
- **1.** $M_* = f$, gauginos lighter than scalars by one loop
- Cases:
- **2.** $M_* \gg 4\pi f/\alpha$, gauginos source SUSY breaking

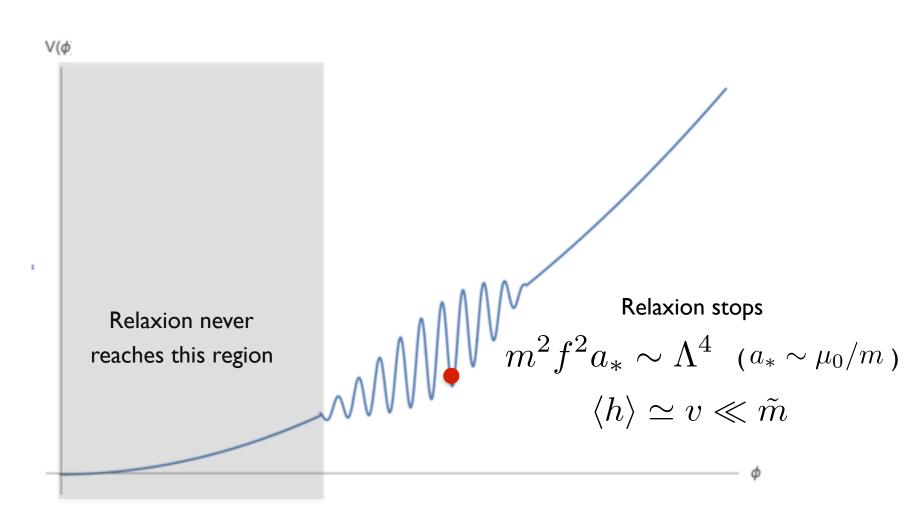

Relaxation

Determinant of Higgs mass matrix - order parameter for EWSB:

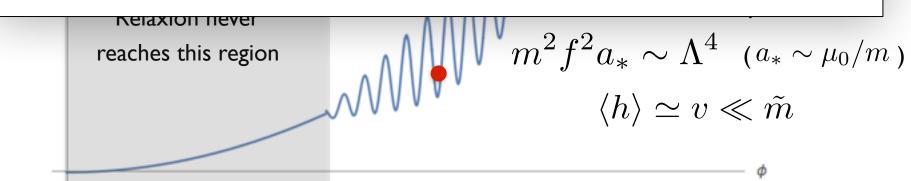

 $\mathscr{D}(a) \equiv \left(m_{H_u}^2 + |\mu|^2 \right) \left(m_{H_d}^2 + |\mu|^2 \right) - |B_{\mu}|^2$

Soft terms (c_i are order one coefficients):


$$m_{H_u}^2 = c_u \, m^2 a^2 \,, \quad m_{H_d}^2 = c_d \, m^2 a^2 \,,$$
 $\mu = \mu_0 - c_\mu \, ma \,, \quad B_\mu = c_0 \, \mu \, ma + c_B \, m^2 a^2 \,,$


$$V(a) = \frac{m^2 f^2}{2} a^2 + \Lambda^4 \cos a$$

$$V(a) = \frac{m^2 f^2}{2} a^2 + \Lambda^4 \cos a$$


$$V(a) = \frac{m^2 f^2}{2} a^2 + \Lambda^4 \cos a$$

$$V(a) = \frac{m^2 f^2}{2} a^2 + \Lambda^4 \cos a$$

Metastable SUSY-breaking minimum formed by the competition of QCD instantons and explicit PQ breaking:

"QCD breaks SUSY"

Constraints on inflation

Inflaton dominates energy density:

$$H^2 M_P^2 > m^2 f^2 a^2 \sim \mu_0^2 f^2$$

$$H>\mu_0f/M_P$$
 (vacuum energy)

Classical rolling dominates over quantum fluctuations

$$\delta a_{cl} \sim \dot{a}/H \sim V'/f^2 H^2$$

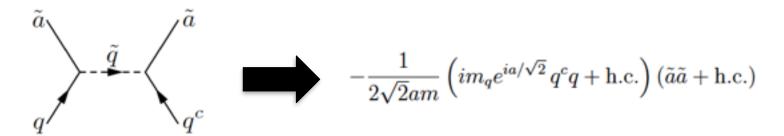
 $\delta a_{qu} \sim H/f$

$$H < (V'/f)^{1/3} \sim (\Lambda^4/f)^{1/3}$$
 (classical beats quantum)

How large can the cutoff be?

(vacuum energy) and (classical beats quantum) imply:

$$\frac{\mu_0 f}{M_P} < H < \left(\frac{\Lambda^4}{f}\right)^{1/3}$$


$$\mu_0 < M_P \left(\frac{\Lambda}{f}\right)^{4/3} \sim 5 \times 10^5 \,\mathrm{GeV} \times \left(\frac{\Lambda}{300 \,\mathrm{MeV}}\right)^{4/3} \left(\frac{10^9 \,\mathrm{GeV}}{f}\right)^{4/3}$$

Relaxino = Goldstino

- Since the relaxion breaks SUSY, the relaxino must be the goldstino
- Relaxino mass is non-trivial Contribution from QCD instantons:

Integrate out squarks to generate 4 – Fermi operator

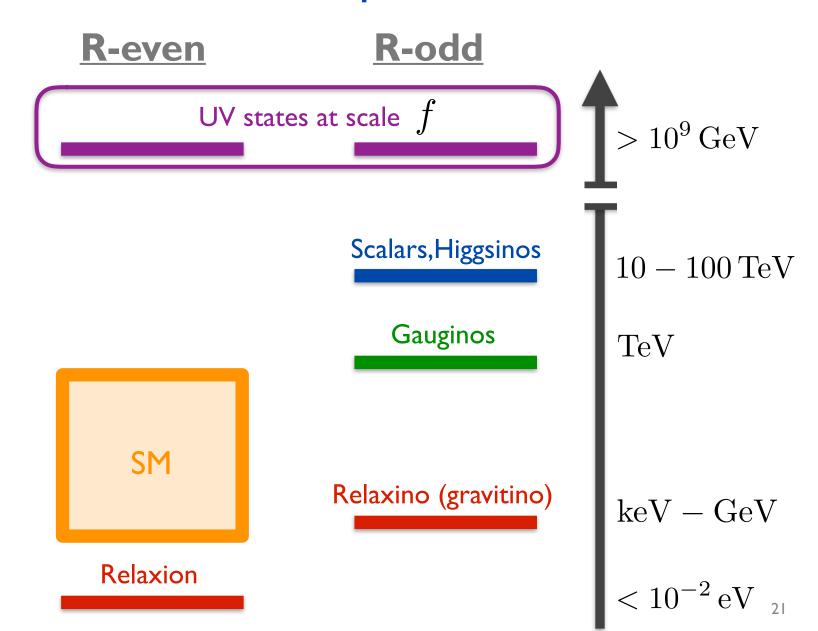
Match to chiral Lagrangian: $m_q \langle q^c q \rangle \to \Lambda^4/2$

$$V(a) = \frac{m^2}{2} f^2 a^2 + \Lambda^4 \cos \frac{a}{\sqrt{2}}$$
 $m_{\tilde{a}}(a) = m - \frac{\Lambda^4 \sin \frac{a}{\sqrt{2}}}{\sqrt{2} a m f^2} \to 0$

Minimize potential

Massless relaxino

Gravitino


Relaxino = Goldstino is eaten by gravitino, with mass

$$m_{3/2} \sim \frac{F f}{M_P} \sim \frac{\tilde{m} f}{M_P} \simeq 10 \,\mathrm{keV} \left(\frac{\tilde{m}}{10^5 \,\mathrm{GeV}}\right) \left(\frac{f}{10^9 \,\mathrm{GeV}}\right)$$

- Gravitino is LSP $m_{3/2}\sim {
 m keV}-{
 m GeV}$ depending on assumptions regarding parameters and inflation constraints
- Gravitino relic abundance places a bound on reheat temperature

$$T_{RH} < M_{\tilde{g}_a} \sim \frac{\alpha_a}{4\pi} \tilde{m}$$

Natural Split-SUSY

LHC Phenomenology

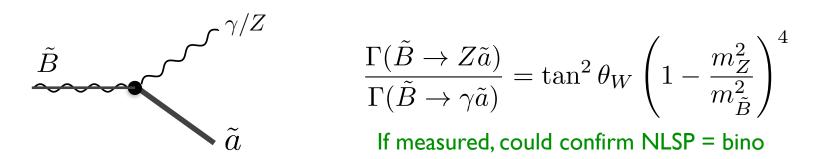
- Scalars, Higgsinos are expected to be heavy, out of reach at LHC
- Gaugino mass are in the TeV range, potentially within reach of LHC

$$M_{\tilde{g}} \approx c_3 \left(\frac{\tilde{m}/k}{10^5 \text{ GeV}}\right) 700 \text{ GeV}$$

 $M_{\tilde{W}} \approx c_2 \left(\frac{\tilde{m}/k}{10^5 \text{ GeV}}\right) 250 \text{ GeV}$
 $M_{\tilde{B}} \approx c_1 \left(\frac{\tilde{m}/k}{10^5 \text{ GeV}}\right) 120 \text{ GeV}$

• Lightest gaugino is NLSP - it decays to SM + relaxino.

$$\Gamma(\tilde{P} \to P\tilde{a}) = \frac{\tilde{m}_P^5}{48\pi \, m_{3/2}^2 M_P^2} \qquad \qquad \tau_{\rm NLSP} = \left(\frac{m_{3/2}}{1 \, {\rm MeV}}\right)^2 \left(\frac{1 \, {\rm TeV}}{M_{\rm NLSP}}\right)^5 \, 1.7 \times 10^2 \, {\rm meters}/c$$


• ℓ_{NLSP} between 100 microns and collider stable

Bino NLSP

• Gluino decays through off shell squarks, $\tilde{g}
ightarrow q ar{q} \tilde{B}$

$$au_{\tilde{g} o q \bar{q} \tilde{B}} pprox \left(rac{ ilde{m}}{10^5 \, {
m GeV}}
ight)^4 \left(rac{1 \, {
m TeV}}{M_{ ilde{g}}}
ight)^5 \, 10^{-1} \, \, \mu {
m m/}c \, . \hspace{0.5cm} ext{(Typically prompt)}$$

• Following gluino decay, Bino decays to relaxino $\, ilde{B}
ightarrow \gamma/Z \, + ilde{a} \,$

• Signatures can be quite striking, e.g. $jjjj+\gamma\gamma+\mathrm{MET}$, with photons displaced

Strong CP #1 - inflaton dependent slope

$$W = (m - \lambda I) \frac{f^2 S^2}{2} + \frac{m_I I^2}{2}.$$

 ${\cal I}$ - inflaton superfield

Effective axion mass and F-term:

$$m_{\text{eff}}^2(\varphi_I) = (m - \lambda \varphi_I)^2 + \lambda m_I \varphi_I$$

 $F_{\text{eff}}(\varphi_I) = i(m + \lambda \varphi_I) \frac{a}{\sqrt{2}}.$

• Require $m^2/m_I \ll \lambda \varphi_I \ll m$

$$F_{\rm eff}(\varphi_I) \approx F_{\rm eff}(0)$$

$$F_{\text{eff}}(\varphi_I) \approx F_{\text{eff}}(0)$$

$$m_{\text{eff}}^2(\varphi_I) \approx \lambda m_I \varphi_I$$

SUSY breaking same before and after inflation

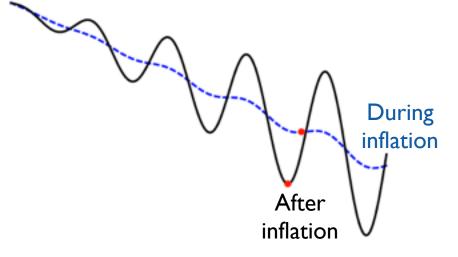
Relaxion mass can be much larger during inflation

• To address Strong CP, we require
$$\; \theta pprox rac{m_{
m eff}^2(0)}{m_{
m eff}^2(arphi_I)} \ll 1 \;$$

Demanding that the inflaton dominates the potential, we find

$$H > \left(\frac{f}{10^9 \text{ GeV}}\right) \left(\frac{\mu_0}{10^5 \text{ GeV}}\right) \left(\frac{10^{-10}}{\theta}\right)^{1/2} \text{GeV}$$

- Can satisfy the condition that barriers form
- Cannot satisfy the condition that classical rolling dominates


Strong CP # 2 - inflaton dependent barriers

- Consider inflation in the regime $H_I > \Lambda_{
 m QCD}$
- Barriers still form, but are exponentially suppressed

$$V(a) = \frac{m^2 f^2}{2} a^2 + \Lambda^4 \Theta(T_H) \cos a$$

• During inflation, $\Theta \lesssim \theta \sim 10^{-10}$ while after $\Theta \sim \mathcal{O}(1)$

 The condition for classical evolution is not satisfied

Open questions

- Strong CP problem
- Inflation, cosmology
- UV issues PQ symmetry, non-compact axion,

super-Planckian field excursions, SUGRA

See talks by P. Graham & T. Gherghetta

Conclusions

- SUSY + Relaxion make a great team
 - Relaxion addresses the little hierarchy problem
 SUSY takes care of the big hierarchy problem
- The relaxion breaks SUSY
 - Metastable SUSY breaking vacuum formed from explicit PQ breaking vs. QCD instantons (i.e., QCD breaks SUSY)
 - SUSY breaking is scanned
 - Relaxino = goldstino
- Natural Heavy SUSY
 - Mini-Split spectrum, Relaxino = LSP,
 - Variety of striking signals possible at LHC