

Q4 Protection Preliminary analysis

- This presentation talks about the protection of the Q4 quadrupole.
- A first study of the quench protection for the current design of the quadrupole is proposed. Results are shown for <u>one</u> <u>aperture</u>
- The study is realised thanks to the software Qtransit based on the M.N.Wilson quench code and which have been developed by CEA for performing quench simulation

INPUTS

Q4 Cable				
h	8.8 mm			
wi	0.77 mm			
wo	0.91 mm	Azimuthal		
Strand diameter (d)	0.475 mm	h insulation		
N strand	36			
Radial insulation (e)	0.08 mm	wi wo		
Azimuthal inslation (e)	0.08 mm	Radial insulation		
Insulated cable crosss section	8.960 mm ²	:: 		
Detection threshold	0,1 V	These values have been confirmed by CERN (Mail from		
Validation time	10 ms	E.Todesco 08/03/2016)		
Maximum Hotspot temperature allowed	< 250K	These values are conservatives (Mail from B. Auchmann		
Maximum voltage to ground allowed	800 V	09/03/2016)		

- To simulate the quench propagation for the Q4 magnets we used a model of two coils where the first coils represent the inner layer of the 4 coils and the second coils represent the outer layers.
- The two layers are separated by a G10 shim of 0,5 mm which delays the thermal conduction between the two layers.
- The total volume of the 4 coils and the total energy are accounted for. QH are fired on all coils.

• The critical surface of the Q4 wire in NbTi is given in the following graph:

DEFINITIONS OF THE VARIOUS TIME DELAYS

Case 1:The outer layer quenches before the quench heaters provok a quench

Isfu

Saclar

CEA

Préparation du test du modèle court Q4

DEFINITIONS OF THE VARIOUS TIME DELAYS

Case 2: The outer layer quenches when the quench heaters provok a quench

Isfu

Saclar

CEA

- Qtransit is a CEA software based on the M.N.Wilson quench code.
- The Qtransit program calculate the thermodynamics of a coil when a quench occurs.
- The temperature rise at the initial quench point define in the inputs. After calculation the code gives the final temperatures inside the winding and the voltage induced
- The geometry and the materials of the cable are given in the inputs

- The mutual inductances have been found by using the ROXIE code
- The layer-to-layer time delay of 75ms has been estimated thanks to a 1D transient finite elements method. The simulations have been made for a time delay of 50ms, 75ms and 100ms
- The simulations have been made with and without quench heaters.

Hypothesis			
L1	9,21 ^{E-3} H		
L2	12,34 ^{E-3} H		
M12	8,55 ^{E-3} H		
LEQ1	37,55 ^{Е-3} Н		
I	4590 A		
Quench Heater	Placed on the outer layer		
T _{quenchcoil1}	0 s		
T _{blind}	6 ms		
T _{validation}	10 ms		
T _{quenchcoil2}	6+10+40=56 ms		
T _{quenchbackcoil2}	56 ms		
T _{quenchbackcoil1}	75+56=131ms		
T _{delay}	≈ 75ms		
T _{QH} +T _{QHdelay}	40 ms (to be verified)		

Hypothesis			
Without quench heater			
Time delay	50 ms		
Maximum Hotspot	279 9 K		
temperature in coil 1	275,5 K		
Maximum Hotspot	152 / 1/		
temperature in coil 2	132,4 K		
Maximum voltage to	517 8 V		
ground	J47,0 V		

Hypothesis			
With quench heater			
Time delay	50 ms		
Maximum Hotspot	167,9 K		
temperature in coil 1			
Maximum Hotspot			
temperature in coil 2	00,0N		
Maximum voltage to	240 2 1/		
ground	540,2 V		

Hypothesis			
Without quench heater			
Time delay	75 ms		
Maximum Hotspot	202 1		
temperature in coil 1	293 K		
Maximum Hotspot	110 C V		
temperature in coil 2	110,5 N		
Maximum voltage to	EQ4 6 V		
ground	594,0 V		

Hypothesis			
With quench heater			
Time delay	75 ms		
Maximum Hotspot	177.6 K		
temperature in coil 1	177,0 K		
Maximum Hotspot	νον		
temperature in coil 2	04,3 N		
Maximum voltage to	240.2.1		
ground	540,2 V		

CEA - Saclay

Hypothesis			
Without quench heater			
Time delay	100 ms		
Maximum Hotspot	300,1 K		
temperature in coil 1			
Maximum Hotspot	90 A K		
temperature in coil 2	09,4 K		
Maximum voltage to	634 V		
ground			

Hypothesis			
With quench heater			
Time delay	100 ms		
Maximum Hotspot	178 Q K		
temperature in coil 1	170,5 K		
Maximum Hotspot	81 O K		
temperature in coil 2	04,9 K		
Maximum voltage to	240.2 \/		
ground	540,2 V		

Results						
	Without quench heater			With quench heater		
Time delay	50 ms	75 ms	100 ms	50 ms	75 ms	100 ms
Maximum Hotspot temperature in coil 1	279,9 K	293 K	300,1 K	167,9 K	177,6 K	178,9 K
Maximum Hotspot temperature in coil 2	152,4 K	118,3 K	89,4 K	85,8 K	84,3 K	84,9 K
Maximum voltage to ground	547,8 V	594,6 V	634 V	340,2 V	340,2 V	340,2 V

- The QTRANSIT code has been used on the updated version of Q4.
- Simulations with and without QH have been carried out
- The highest hot spot temperature (300 K) is reached in absence of QH and with a layer-to-layer time delay of 100 ms.
- With QH:
 - the hotspot is limited to ~180 K.
 - The max V to ground is ~340 V
- Next steps:
 - Simulation with ROXIE
 - Detailed design of the QH: high/low field, strip design and number of circuits

- Powering scheme of the Q4?
- Number of heaters PS

Hypothesis			
Without quench heater			
Time delay	infinite		
Maximum Hotspot	205 6 K		
temperature in coil 1	505,0 K		
Maximum Hotspot	1 O K		
temperature in coil 2	1,9 K		
Maximum voltage to	697 4 1		
ground	007,4 V		

Hypothesis			
With quench heater			
Time delay 100 ms			
Т _{QHdelay} +Т _{QH}	60 ms		
Maximum Hotspot temperature in coil 1	210,7 К		
Maximum Hotspot temperature in coil 2	78,7 K		
Maximum voltage to ground	634 V		

