

CERN Openlab Machine Learning and Data Analytics WS| April 2016

Machine Learning and Data **Analytics at Siemens**

Volker Tresp

Siemens Research and Ludwig Maximilian University of Munich

Five Megatrends shaping our world of tomorrow – changes in the markets are accelerating

4 UNCTAD (2013)

6 IDC: The Digital Universe (2012)

2 Met Office Hadley Centre observations (2014)

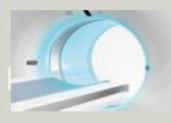
The Digital Transformation of Services

Classical Time & Material Maintenance

Performance & Outcome based Contracting

Network Platforms

1. Predictive Maintenance



E.g. Healthcare Objectives

Prevent unplanned downtime of CT scanners caused by tube failures

E.g. Mobility Objectives

Increase availability and reliability of trains

E.g. Power Services
Objectives

Improve customer ROI through flexible service in any market condition

Reactive Maintenance Preventive Maintenance Condition-based Maintenance Predictive Maintenance Prescriptive Maintenance

Sinalytics brings together the technologies needed in an increasingly digitized world

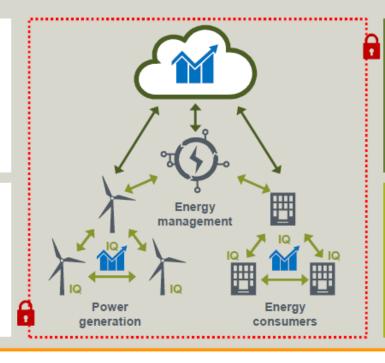
Sinalytics

Data analytics

On-premise, in the cloud and soon in-the-field leveraging Web of Systems technologies

Cyber security

Protecting customer data in open, interconnected industrial IT systems



Connectivity

Secure and proven technologies connecting already ~300k devices

Smart networked devices & systems

System-aware, autonomous and app-enabled to meet industry and infrastructure needs

Technology Field: Business Analytics & Monitoring

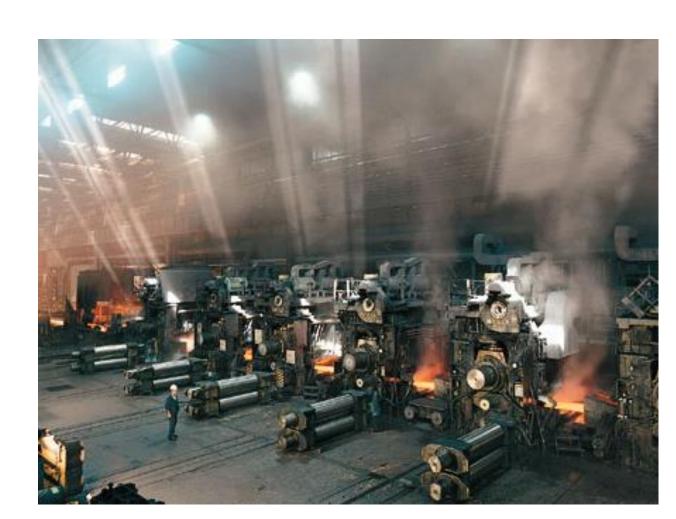
Data Business Business Customer **Physics** Data Analytics Value Data **Technologies** Structured **Prescriptive analytics (Machine Learn.) Online Operation and Learning** Decision support, Actionable solutions Sensors Schedules **Autonomous solutions Data presentation Transactions** Visual analytics, dashboards, reports Configurations **Predictive analytics (Machine Learning)** Data modeling and analysis Databases ... Fault-, Production-, Demand- prediction, Optimization Price forecasting Reasoning / Semantics Unstructured Natural Language Processing / Search Multi-structured Data Mining / Machine Learning (incl. NN) **Diagnostic analytics (Data Mining))** Log Files Monitoring, Alarm management, Root cause Service Reports **Data management** analysis, Diagnostic advice **Specifications** Data warehouse, NoSQL(inc. Hadoop), Stream processors (parts of Lambda Architecture) **Descriptive analytics (Data Mining)** Images/Videos **Data integration** Performance and cost reports, Fault reports, Physical-, Virtual-, Semantic-, integration, Operation dashboards ETL, Data Quality, Metadata management

- WatchCat
- Elvis

Two Decades of Experience in the Application of Machine Learning in Challenging Environments

NeuroSteel

"In Field Analytics"



Rolling Mills: no Trivial Task

- How much force F is needed for a desired reduction in steel thickness?
 - For all kinds of parameters, and steel properties
- The dependency of the force on 30 and more parameters was modeled with a neural network
- Maybe sounds like a simple problem but:

Challenges:

Sparse data and safety guarantees

- Existing solution was used as a prior
- Additional data was generated from the existing solution

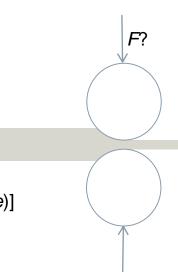
[Geoff Hinton referred to the mixing in of prior data as:

"Priors without Prejudice" (from Jane Austin's Pride and Prejudice)]

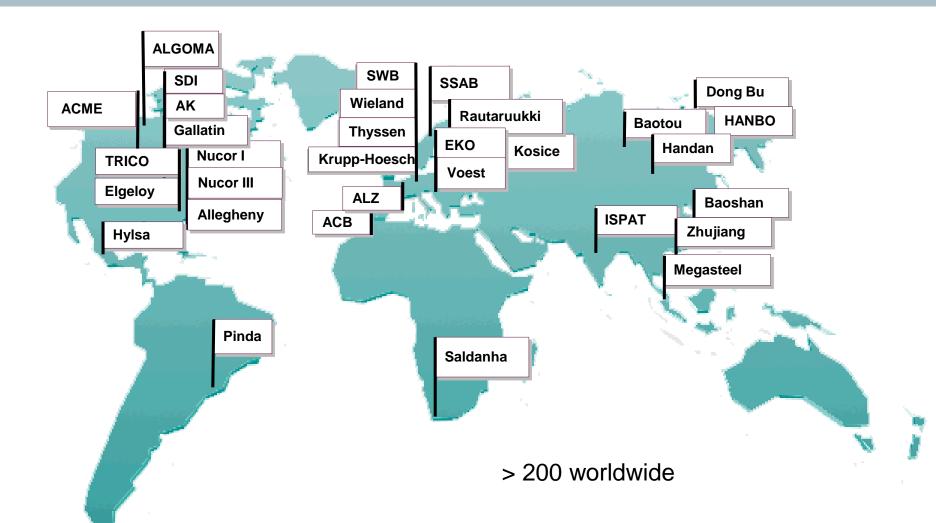
Online learning

- The plants change quickly (concept drift)
 - Online learning was required (in general, would be avoided at all costs)
- Multi-resolution adaptation scheme was developed: performs stable adaptation at different time scales
- Cold start for a new plant, ...

Röscheisen, Hofmann, Tresp. Neural control for rolling mills: Incorporating domain theories to overcome data deficiency. *NIPS*1991* Schlang, Feldkeller, Lang, Poppe, and Runkler. Neural Computation in Steel Industry. *European Control Conference (ECC)*, 1999



Huge Commercial Success: Examples for World-Wide Installations



Neural Networks becomes Deep Learning: First Contact

- Kai Yu
- Student at LMU (Siemens Stipend) under my supervision '02
 - Gaussian Processes
- Siemens Research '04
- NEC Research '06:
 - Deep Neural Networks (in Yann LeCun's footsteps)
- BAIDU:
 - Head of Institute for Deep Learning '09
- Horizon Robotics '15

Yu Kai, head of Baidu's Institute of Deep Learning (IDL), demonstrates the smart bike project, DuBike, at the company's headquarters in Beijing. Photo: Simon Song

Currently there is Huge Interest in AI in the Public

Baidu's chief scientist explains why computers won't take over the world just yet

Tech 2015: Deep Learning And Machine Intelligence Will Eat The World

Despite what Stephen Hawking or Elon Musk say, hostile Artificial Intelligence is not going to destroy the world anytime soon. What is certain to happen, however, is the continued ascent of the practical applications of AI, namely deep learning and machine intelligence. The word is spreading in all corners of the tech industry that the biggest part of big data, the unstructured part, possesses learnable patterns that we now have the computing power and algorithmic leverage to discern-and in short order.

Are AI and "deep learning" the future of, well, everything?

Thanks to the advances in deep machine learning, technology companies across the globe are teaching computers to think for themselves

NATURE | INSIGHT | REVIEW

Deep learning

Yann LeCun, Yoshua Bengio & Geoffrey Hinton

Affiliations | Corresponding author

Nature 521, 436-444 (28 May 2015) | doi:10.1038/nature14539 Received 25 February 2015 | Accepted 01 May 2015 | Published

a your Joogle

box and it

Abstract

Abstract • References • Author information

Deep learning allows computational models that are composed of n

Only for New Industry?

- Machine Learning so far had most impact in the new industries: Google, Facebook, Microsoft,
- As shown there are a number of applications also in other industries (e.g., at Siemens)
- "Old industry" only has a future if it embraces **Machine Learning**
 - Autonomous driving
 - Digital Health, personalized medicine
 - **Digitalization (Siemens Business)**
 - **Automation**
 - Environmental monitoring

Fanuc Aims to Enhance Factory Robots with 'Deep Learning'

Deep Learning is the Future of Automation and Robotics

COMMENT

deep learning.

Robots are getting more agile and automation systems are becoming more complex. Yet the most impressive development in robotics and automation is increased intelligence. Machines in automation are increasingly able to analyze huge amounts of data. They are often able to see, speak, even imitate patterns of human thinking. Researchers at the automation company, European Automation, call this

Technology

Deep Learning: Automotive Industry Takes a Giant **Leap Forward**

Recent advancements in artificial neural networks (ANN) and so-called deep learning are accelerating the reality of self-driving vehicles faster than was originally expected as hardware and software vendors are taking the lead in pushing the technology to enable autonomous vehicles forward.

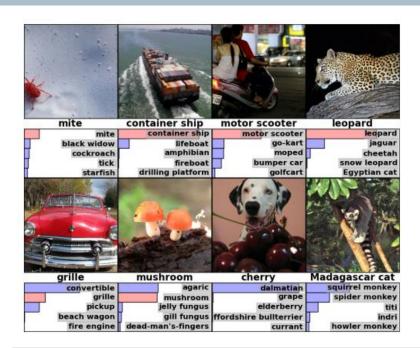
Deep learning, also known as machine learning, has been a concept in place since the early 1980s but only recently has technology advanced to a point where it has become a feasible reality. The idea of deep learning is to attempt to artificially emulate the functionality of the human brain via hardware and software. An ANN will continuously learn and will base its ability to recognize the surroundings on a deep learning phase based on real examples of sounds, images and input from other senses.

Using neural network-based forecasting software from

Siemens, power generation and demand can be

predicted with growing accuracy.

Successes are for Real: Computer Vision



Model	Top-1	Top-5
Sparse coding [2]	47.1%	28.2%
SIFT + FVs [24]	45.7%	25.7%
CNN	37.5%	17.0%

Table 1: Comparison of results on ILSVRC-2010 test set. In *italics* are best results achieved by others.

- 1000 classes
- 1.28 Mio images
- No Feature Engineering!
- An order of magnitude improvement with respect to the state of the art!

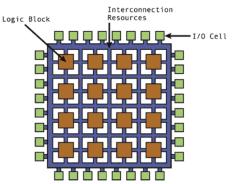
- Human: 5%
- "Sensational" 33% improvement by Alex-Net in 2010
- 2015: 86% improvement!

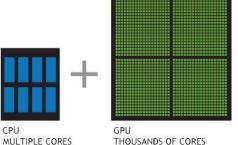
MSR (Dec 2015):

considerably increased depth. On the ImageNet dataset we evaluate residual nets with a depth of up to 152 layers—8× deeper than VGG nets [41] but still having lower complexity. An ensemble of these residual nets achieves 3.57% error on the ImageNet test set. This result won the 1st place on the ILSVRC 2015 classification task. We also present analysis

Deep Learning comes with an incredible powerful infrastructure

- Theano, Keras, Caffe, Torch, TensorFlow... are powerful software development infrastructures
- GPU computing can be used to speed up computation
- FPGA ... can be used for implementing trained networks
- The community itself:
 - Explosion of ideas and creativity
 - Scientists and engineers and





Page 13

DL@Siemens (the Future)

- Setting up a powerful computing infrastructure
- Weekly Journal Club
- Demonstrators
- Impact in Siemens

"Innovating today is about creativity, it is about the freedom to act...if you look at the big conglomerate...it's highly regulated, it's a lot of talk about...internal controls and this and that...so there's a huge mindshift change to get the best of people"

Kaeser

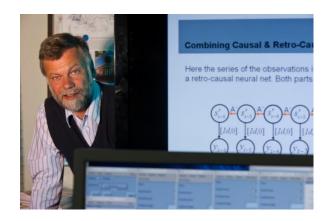
Page 14

Siemens Activities: Not Starting with Zero

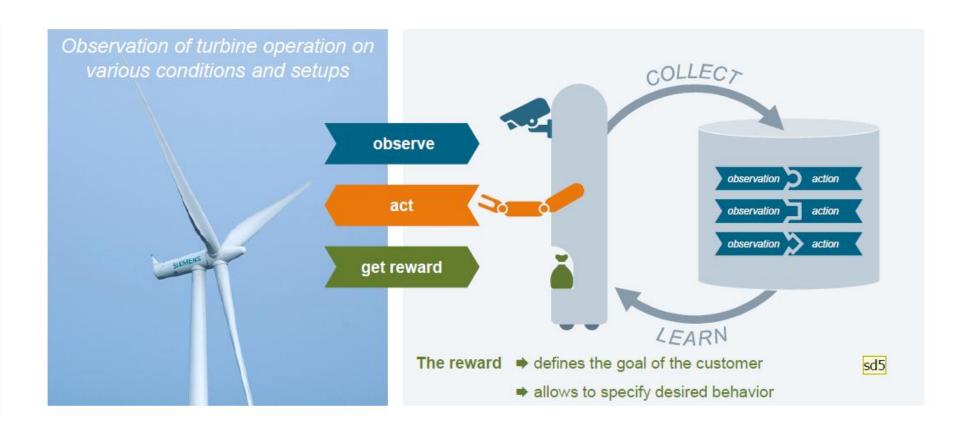
Other ongoing activities at Siemens Research (excerpt):

- Time-series modeling and prediction with recurrent (deep) neural networks with a 25 year history (Zimmermann, Grothmann)
- Optimization and condition monitoring of gas- and wind turbines with reinforcement learning and recurrent neural networks (Sterzing, Udluft, Hentschel, Tokic)
- SENN Framework

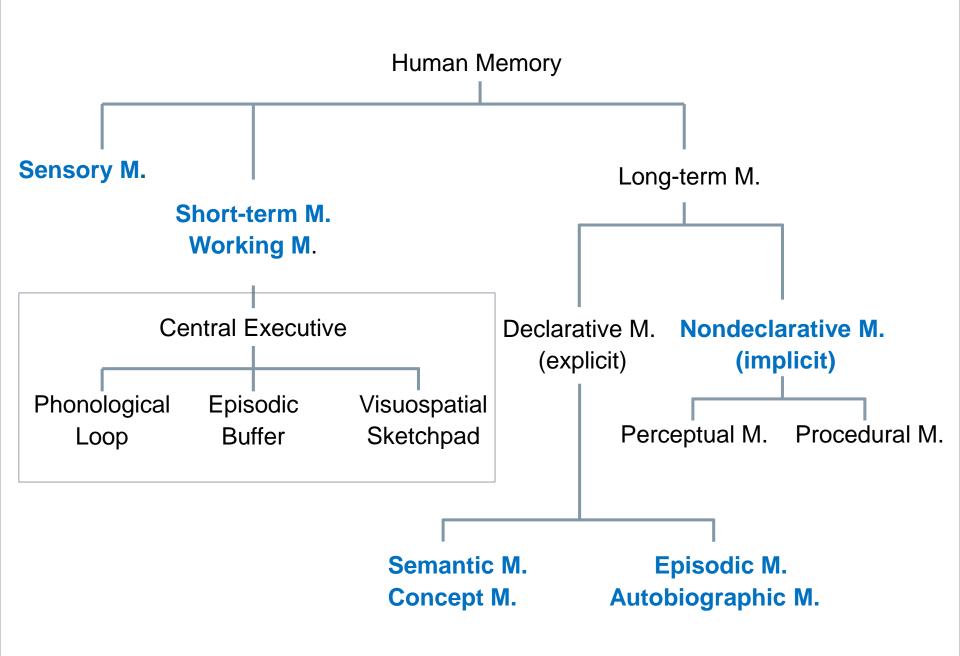
 Medical Image Analysis at Siemens Healthcare (Comaniciu)



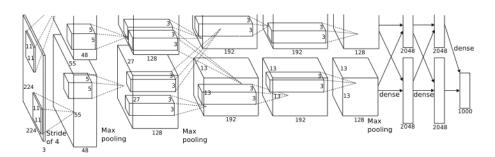
Reinforcement Learning



With a Little Help from our Brain



Deep Learning Ecosystem for High-Dimensional (Sparse) Data

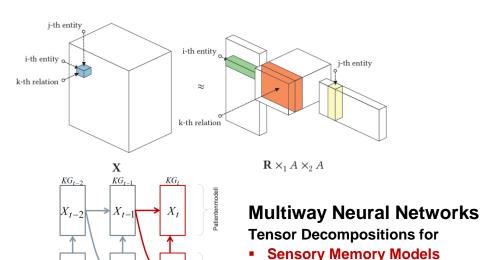


Deep Convolutional Networks exploit locality in time and space and combine local features to form flexible complex patterns

Semantic Knowledge Graph

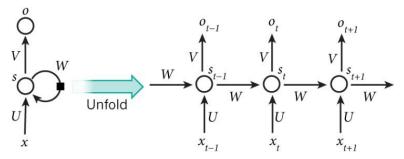
Episodic Event Memories

Models

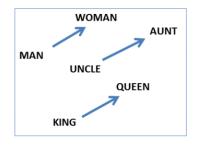


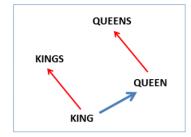
 $A_{t-1}(M)$ Page 20

 $A_{t-2}(M)$



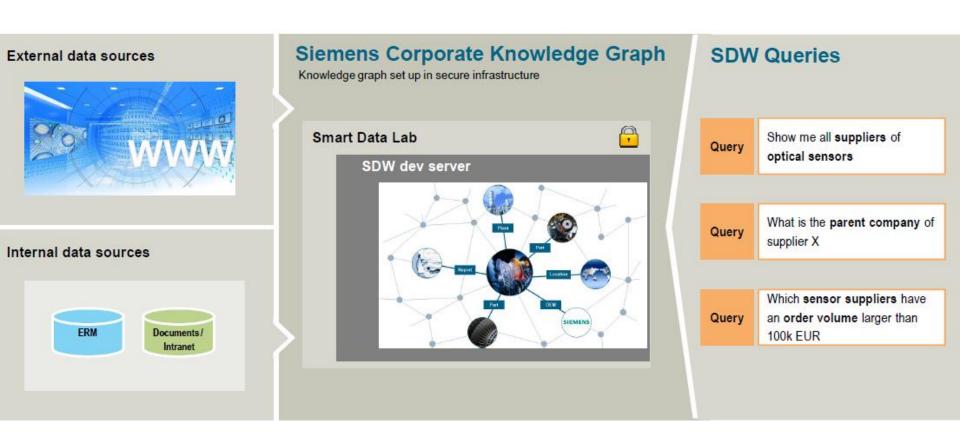
Recurrent Networks exploit locality in time and space and combine local (short term) features to form complex (long term) patterns by exploiting internal memory

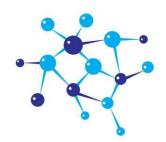




(Mikolov et al., NAACL HLT, 2013)

Representation Learning to achieve latent representations of words, entities and events





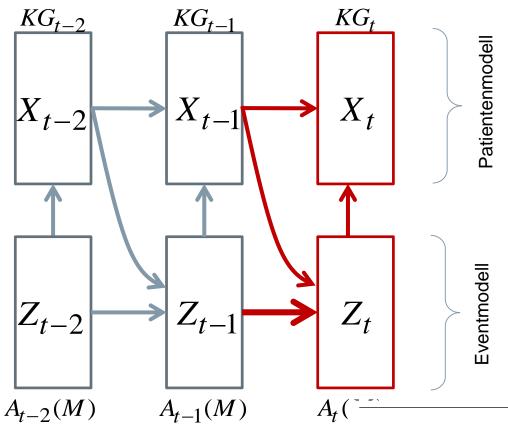
Clinical Data Intelligence Klinische Datenintelligenz

Funded by the Federal Ministry for Economic Affairs and Energy

Technologiy Programm "Smart Data"

Dynamic Multiway Neural Network for Medical

Decision Processes (Nephrology)



K	rankenhausaufenthalt			Dialysezentrum		
E	atientID inweisungsDiagnoseID? ufnahmeDiagnoseID? intlassungsDiagnoseID?			Telefon	Diagnose	
A	Aufnahmenummer Anfangsdatum Enddatum Krankenhausname Stationsname		Patient PatientID Name	TelefonID PatientID ArztID Nummer	DiagnoselD PatientID Anfangsdatum Enddatum Art	
K						
Stationsart Einweisender_Name Bewegungsnr Bewegungsart		Vorname Titel			→ DiagnoseID -	
		Geburtsdatum Geschlecht	Transfusion	ICD10	Therapie	
NutzeriD	Zuoritt		Strasse PLZ Ort	TransfusionID PatientID Art	Fallnummer Bewegungsnr ICDVersion	TherapieID DiagnoseID Datum
Nucerio	ZugriffiD NutzerID PatientID	-	Ambulanzarzt Krankenkasse Versicherungskennummer	Anzahl Datum		Ort Massnahme ICPM
	, accuracy	_	Status Versicherter	PatientiD		
PatientID	Risiko_und_Allergie	i	Blutgruppe Grunderkrankung ET_Grunderkrankung			
RuAID PatientID IstRisiko Bezeichnung Wert VerlaufID PatientID PatientID		GE_bekannt_seit GE_Biopsie Koerpergroesse	Urgency	Todesursache		
	Bezeichnung		Datum_erste_Dialyse Todesdatum Kassenanschrift	UrgencylD Organ PatientID	TodesursacheID PatientID Ursache	
	Verlauf	Versicherungsnr NamensTitel Geburtsname Dauernotiz		Datum Stufe		
				Begruendung		

	AUPRC	AUROC
Markov-tensor	0.574 ± 0.0014	0.977 ± 0.0001
Logistic Regression	0.554 ± 0.0020	0.970 ± 0.0005
KNN	0.482 ± 0.0012	0.951 ± 0.0002
Naive Bayes	0.432 ± 0.0019	0.843 ± 0.0015
Constant predictions	0.350 ± 0.0011	0.964 ± 0.0001
Random	0.011 ± 0.0001	0.5

- Analysis
- Prediction
- Prescription

Esteban, Schmidt, Krompaß, Tresp. Predicting
Sequences of Clinical Events by using a
Personalized Temporal Latent Embedding Model.
IEEE ICHI, 2015
Page 23

	AUPRC	AUROC
KG+Markov	0.586 ± 0.0010	0.979 ± 0.0001
Markov	0.574 ± 0.0014	0.977 ± 0.0001
KG	0.487 ± 0.0016	0.974 ± 0.0002

Conclusions

- There is a long history of machine learning and data analytics at Siemens
- Digitization is the main business driver of innovation
- The Deep Learning Ecosystem is a main technological driver of innovation:
 CNN, RNN, multiway NN, Representation Learning
- We are looking forward to continuing the fruitful collaboration with Industrial Control Systems team

