

CERN openlab Machine Learning and Data Analytics Workshop

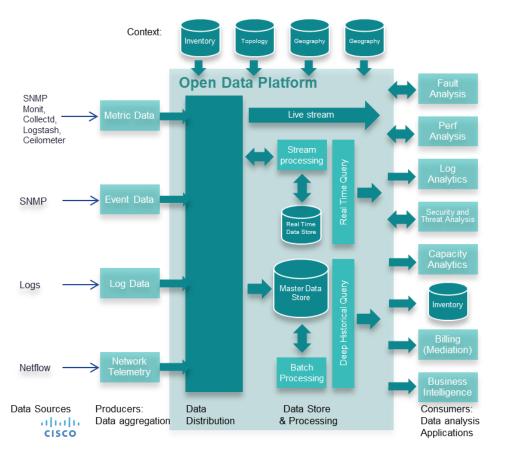
April 29th, 2016

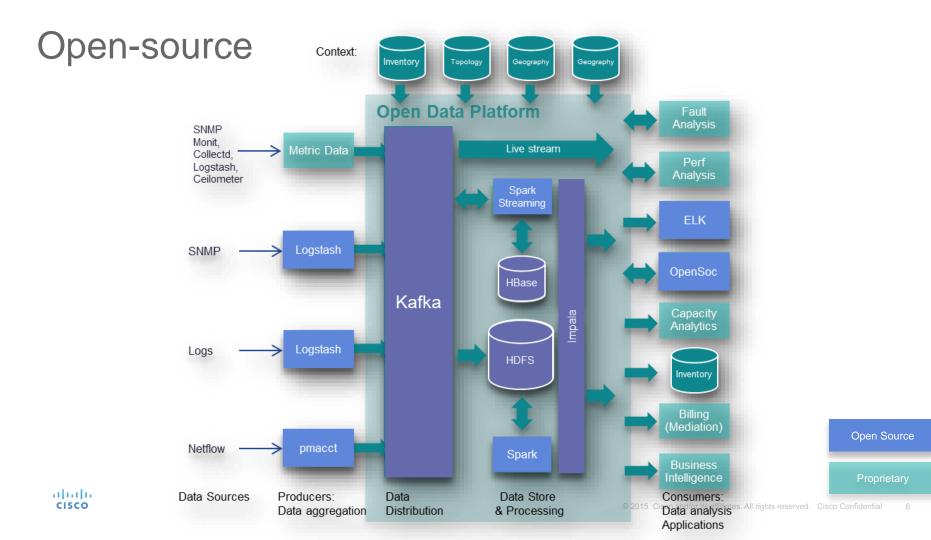
Machine Learning and Data Analytics at Cisco

Enzo Fenoglio, Hugo Latapie, JP Vasseur, Nick Hall, Trevor Smith

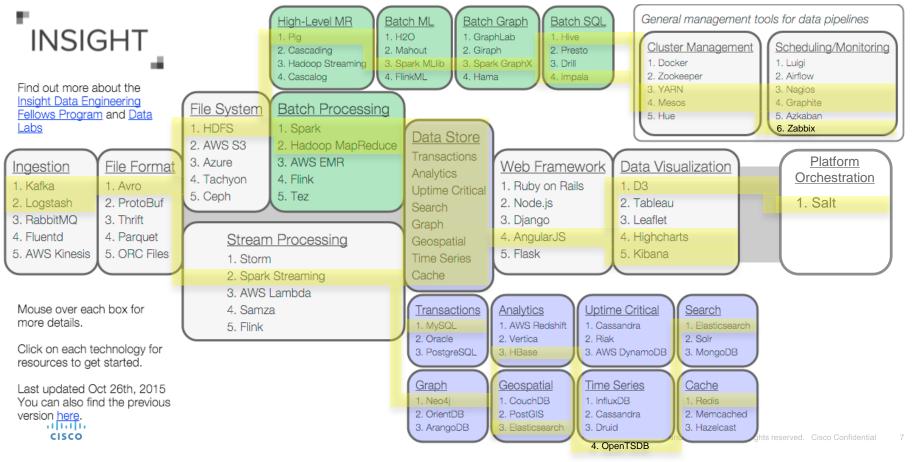
Overview on...

Platform for Network Data Analytics
Deep Learning for Visual Analytics
Data Fusion for Edge Computing
Self-Learning Networks


Panda Platform for Network Data Analytics


Problem statement

- NFV (network function virtualisation), SDN & IoT = dynamic, scalable and service-assured infrastructures on which to deploy
- These service topologies generate large quantities of system log, network flow and telemetry data
- □ Reduce the operational complexity for SP&Enterprise customers
 - Low-order : "Do I have service-impacting issues?"
 - Mid-order : "Will I have any service-impacting issues"
 - High-order : "Automate the control of my services"
- This, alongside existing workflows, tools and SLA's, drives the need for an open, scalable analytics platform


Platform

- Lambda-based architecture: (batch + streaming)
- Collect data once : allow any analysis application to mine any data source
- Extensible : enable the rapid deployment of analysis functions
- Streaming (online) & batch (offline) machine intelligence
- Leverage the continual innovation in open-source data and ML community
- Contribute our work back to this community and/or its affiliates. All rights reserved. Cisco Confidential 5



Technology map

Massively-parallel batch processing

- Support for applications that deliver computations over very large datasets with highly heterogeneous structure
 - Addresses data volume & variety
- □ Apache Spark (spark.apache.org)
 - Framework and engine for distributed, large scale data processing
 - Many times faster than MapReduce, which it is largely replacing in industry
 - Also provides engine behind Spark Streaming Driver Program
- □ HDFS (hadoop.apache.org)
 - Fault tolerant and self-healing distributed file system
 - Large-scale data processing workloads
- Focus on scalability, flexibility and throughput
 Proven deployments of >100PB

Worker Node

Executor

Task

Worker Node

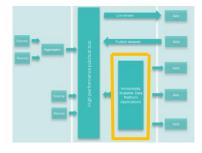
Executor

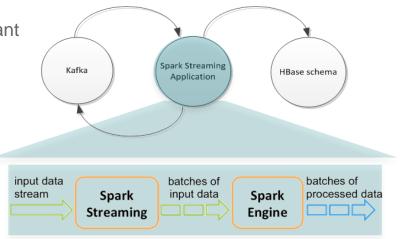
Task

Cache

Task

Cache


Task


Cluster Manager

SparkContext

Stream processing

- Support for applications that need to deliver computations over data in near real time (e.g. 1s)
 - Addresses data velocity
- □ Apache Spark Streaming (spark.apache.org)
 - Framework and engine for distributed, scalable fault-tolerant streaming applications
 - Micro-batch orientation
 - Consume/produce to/from Kafka
- □ Apache HBase (hbase.apache.org)
 - Distributed, scalable data store
 - Designed for fast, random access to very large data sets
 - $\hfill e.g.$ billions of rows and millions of columns
 - Persists results of streaming computation in optimized schema

ılıılı cısco

Platform management

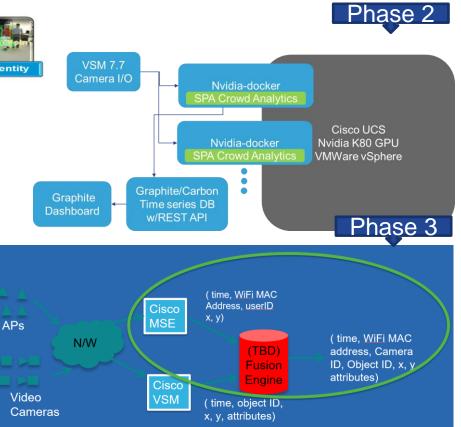
A Data Platform					Applications
ta Distribution	Data Processing Stream Spark Strea (*) Last update: 1 mil- Last update: 1 mil- Used Memory Used vCores	Batch Spark () Last update: 1 minute	Oozie Last update: 1 minute 5GB/24GB 5/24	Query Impala Explore Zeppelin Metrics OpenTSDB Grafana	Deployment Manager Last update: 1 minute Image: 0 devoteam-swo-spark-st sampleKSOapp spark-streaming-to-hbase-exampl weatherLogger
	Data Storage HBase Last update: 1 minute	3	Hive metastore Last update: 1 minute	6	Console Backend Metric Logger
	HDFS Last update: 1 minute				
	•		Metric	Value	
	2		Used Capacity	74.5GB/252.3GB	
	T		JVM Heap Used	274 MB	
			Total No. of Files	26,917	
			Live Datanodes	3	
			Dead Datanodes	0	

ılıılı cısco

panda.cisco.com

Deep Learning for Visual Analytics

Spatial Predictive Analytics: Problem to solve

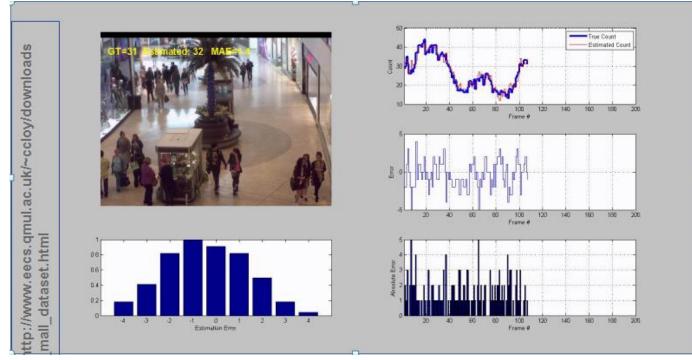

□Cisco customers ask for accurate people counting, location, tracking, and more advanced crowd analytics

- □There are already practical solutions for the sparse target case but **not** for the dense target case
- Outstanding crowd analytics using only CV for real-world PoC is difficult. Clutter and occlusions add even more complexities.

Spatial Predictive Analytics Overview

- General DL pipeline based on docker overlay networking and swarm with support for ~10³ nodes and ~10⁴ containers
- High performance video pipeline based on **gstreamer**

Spatial Predictive Analytics – Crowd Counting


□ We aim at counting individuals in crowded environments

Traditionally the number of people in region of interest is inferred by (1) person-counting sensors, (2) special purpose top view cameras

We use Region-based Convolutional architecture (R-CNN) and multivariate regression (PLS) for density counting estimation

	MAE	MSE
Chen 2 (BMVC2012)	3.59	19.0
Chen 3 (CVPR2013)	3.43	17.7
PLS (with original HLAC)	3.82	22.3
SVR (with proposed feature)	3.41	18.5
Proposed method	1.8	7.5

Spatial Predictive Analytics – multi-tracking

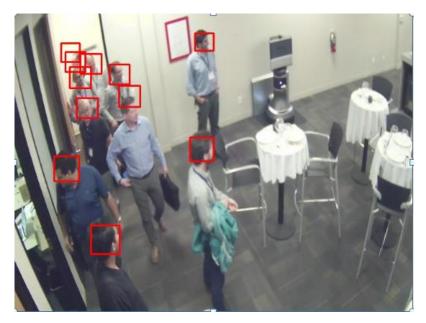
□We aim at tracking multiple person once localized in a frame

- 1. estimate the spatio-temporal position of each person in each frame using a DL pipeline: CNN (GoogLeNet)+LSTM
- assign UIDs to formed trajectories: Kalman filter + Jonker-Volgenant to solve the assignment problem

Training

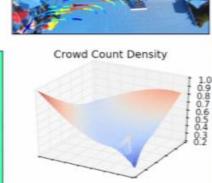
□Ground-Truth generation is a pain

Transfer Learning : use previously trained model to perform inductive learning


Semi-supervised learning : partially labelled dataset reduces the training iterations and improves accuracy

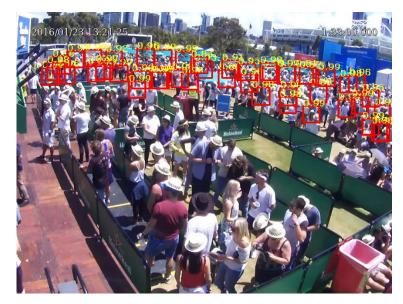
Spatial Predictive Analytics -- Location

Open Source Retail Mall Dataset


Cisco Lab in San Jose

Spatial Predictive Analytics -- Tracking

Crowd Contour Flow



Streamlines

Near field DL pipeline

Far field DL pipeline

Data Fusion for Edge Computing

Evolution of location use-cases

Healthcare Asset management & wayfinding

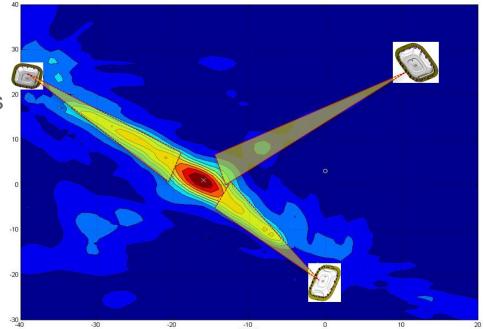
Retail Engage shopper in aisle & deliver proximity-based offers

Museum Enabling the Digital docent

Wayfinding & workspace optimization

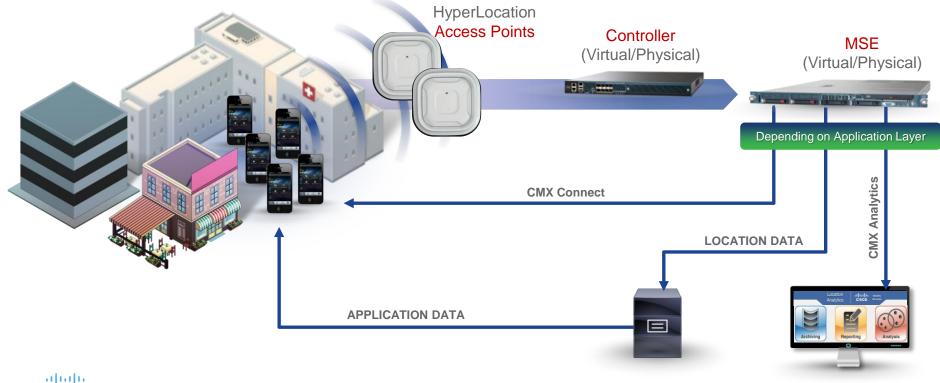
Technology – network based location

□State of the art:


- 5-7m accuracy
 - Multi-lateration on WiFi Client based on RSSI at multiple APs

□Cisco-Hyperlocation:

1m accuracy


iliilii cisco

- Increase accuracy & reliability
- o AP connected clients
- Add Angle-of-Arrival in addition to RSSI

How Hyperlocation Works Built on Cisco Unified Access

CISCO

Mobile Application Server rights reserved. Analytics UI 25

Machine Learning from End Point to Cloud

An intersection of technology and trends:

CISCO

- Recent camera sensor technologies offer advanced capabilities
- Advanced cameras + analytics create powerful IoT sensors
- Visual analytics and data fusion fit naturally into the fog architecture

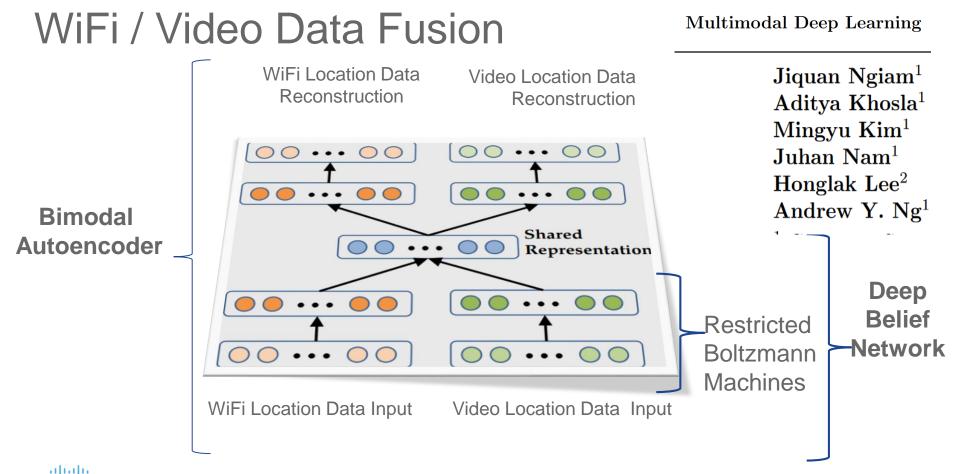
The industry is moving towards scalable, flexible, distributed analytics platforms

Cisco Data Center Portfolio and NVidia

- Virtual workstation for high-end graphics applications
 - Cisco UCS C240 M4 Rack servers
 - Support NVIDIA GRID 1.0 and 2.0 with K1/K2 and M60 cards
 - Support for Magma ExpressBox for higher density
 - Cisco UCS B200 M4 Blade servers
 - Recently introduced NVIDIA M6 MXM support on Blade server
- Cisco HyperFlex –2nd generation HyperConverged platform
 - Phase 1: K1/K2 support

CISCO

• Phase 2: M6/M60 support


• Deep Learning and HPC

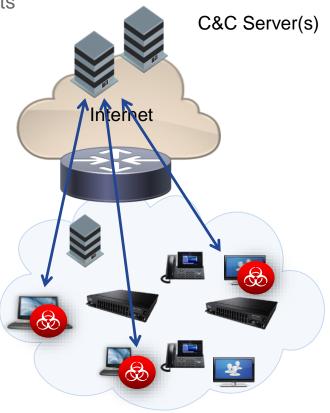
Cisco UCS C240 Rack servers with TESLA K80

CISCO

Smart Cities: Innovative pilot proposed by the City of Paris

1. Optimization of energy management in public buildings

2. Better Understanding of the public space


Self-Learning Networks

What Self Learning Networks is About ...

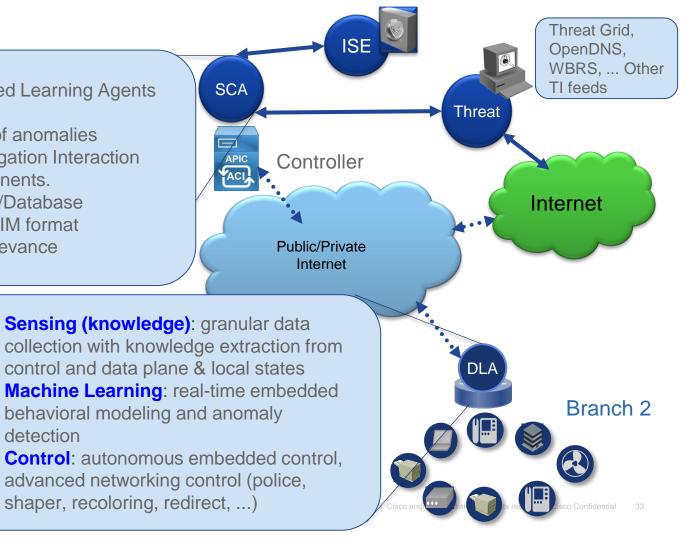
- SLN is fundamentally a hyper-distributed analytics platform at the edge
- Putting together analytics and networking
 - Goldmine of untouched data on networking gear (*sensing*)
 - Network learns and computes models on premise (analytics)
 - The Network adapts, modifies its behavior (*control*)
- SLN *for* Security: attacks are incredibly sophisticated and targeted, ex-filtration of data being a major concern, requiring a next-generation approach.
- True Technology disruption

Botnets and Data Ex-Filtration Techniques

- Size can range from thousands to millions of compromised hosts
- Botnet can cause DDoS & other malicious traffic (spam, ...) to originate from the inside of the corporate network
- C&C (C2) servers become increasingly evasive
 - Fast Flux Service Networks (FFSN), single or double Flux
 - DGA-based malware (Domain Generation Algorithms)
 - DNS/NTP Tunneling
 - Peer-to-Peer (P2P) protocols
 - Anonymized services (Tor)
 - Steganography, potentially combined with Cryptography
 - Social media updates or email messages
 - Mixed protocols
 - Timing Channels

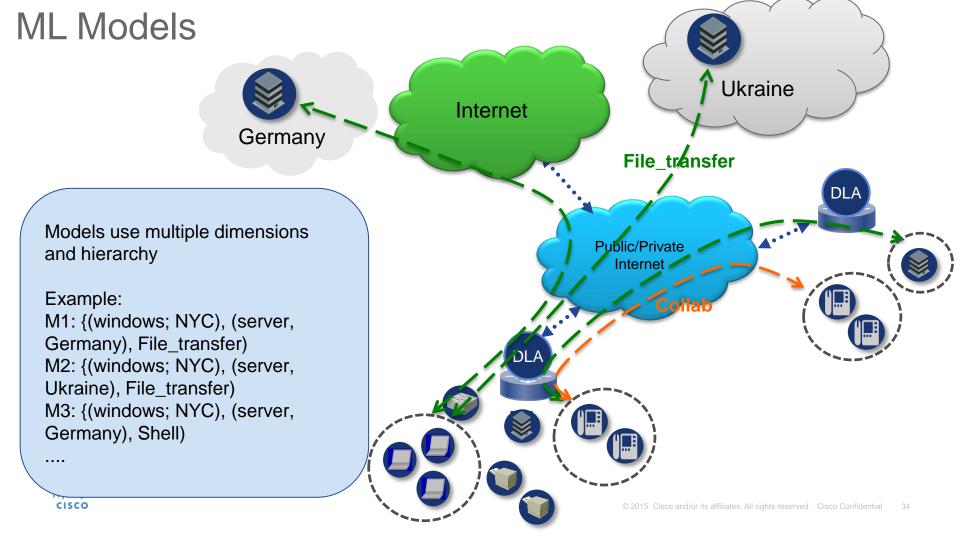
iliilii cisco

SLN Architecture


Orchestration of Distributed Learning Agents (DLAs)

Advanced Visualization of anomalies Centralized policy for mitigation Interaction with other security components. North bound API to SIEM/Database (e.g.Splunk) using CEF/CIM format

DLA


detection

Evaluation of anomaly relevance

...... CISCO

SCA

··II·III CISCO