

LHCb Machine Learning challenges

Niko Neufeld¹, Stefan Roiser¹, <u>Andrey Ustyuzhanin</u>^{1,2} April 29, 2016

¹CERN LHCb, ²Yandex School of Data Analysis

Overview

Detector Operation & Data Quality

The first frontier of data taking

- Data Quality Monitoring
- · Trigger operation anomaly detection
- · Online farm hardware failure monitoring and prediction

Triggers Optimization

Triggers are event selection procedures that should filter out uninteresting events

- Topological trigger (finds decays of certain topologies)
- · ~100 triggers
 - · Quota management for trigger lines
 - Efficiency analysis

Tracking

Tracking - identification of particle track by hit patterns

 usage of advanced algorithms and computational architectures for efficient track finding

Grid Data Storage Optimization

Events are stored in the LHCb grid for a longer term

- · Access pattern analysis
- Event indexing
- Job scheduling

Data Preprocessing

Before releasing the collected data it is pre-processed by several algorithms that use machine learning already

- · Particle identification
- Flavour tagging
- Jet tagging

Data Analysis

Once data is stored in the grid, it should be analysed as accurately as possible

- Event selection
 - · Quality metrics definition/selection
 - · Algorithm training and optimization
- · Training on Data vs MC
- Can data processing happen automatically right as it is taken?
 - turbo stream
 (https://cds.cern.ch/record/2011573)
 - · many more steps to go...
- · Collabroative data analysis workflow

Simulation

Simulation is the largest user of CPU time.

· Generative models

Data Published & Outreach

Flavours of physics Kaggle challenge:

https://kaggle.com/c/flavours-of-physics

Heavy Flavour Data Minig workshop, Feb'16

https://indico.cern.ch/event/433556/

