Machine Learning in ATLAS: activities and future challenges

Matthew Beckingham, Michael Kagan, <u>David Rousseau</u> for the ATLAS collaboration

OpenLab ML and Analytics workshop, 29th April 2016

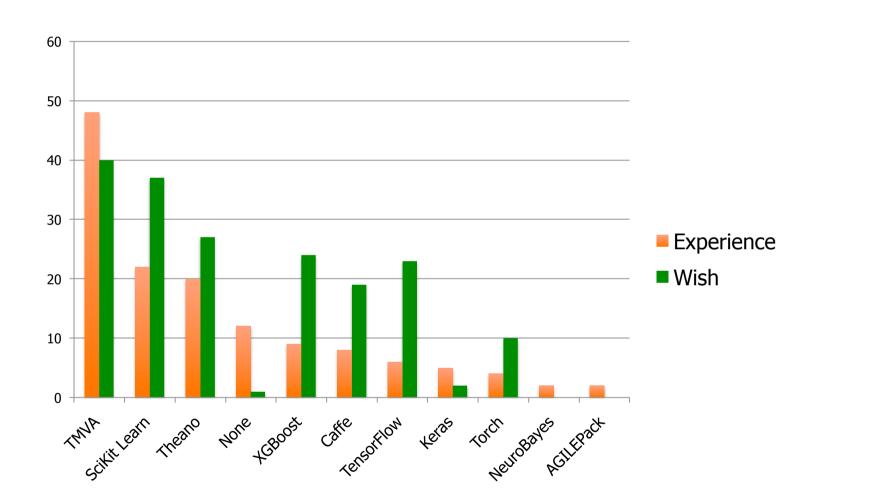
ML events (with ATLAS participation)

- □ HiggsML Challenge, summer 2014
 - → HEP ML NIPS satellite workshop, December 2014
- □ Connecting The Dots, Berkeley, January 2015
- DS@LHC workshop, 9-13 November 2015
 - →future DS@HEP workshop
- LHC Interexperiment Machine Learning group
 - Started informally September 2015, gaining speed
- Moscou/Dubna ML workshop 7-9th Dec 2015
- Heavy Flavour Data Mining workshop, 18-21 Feb 2016
- □ Connecting The Dots, Vienna, 22-24 February 2016
- (internal) ATLAS Machine Learning workshop 29-31 March 2016 at CERN
- Hep Software Foundation workshop 2-4 May 2016 at Orsay, ML session
- TrackML Challenge, fall 2016

ML in Atlas

- Machine Learning (or rather Multi Variate Analysis as we used to call it) used almost since first data taking (2010) for reconstruction and analysis
- In most cases, Boosted Decision Tree with Root-TMVA, but recent explosion of usage and studies (see later)
- Recent Atlas ML workshop organised (by MB, MK, DR) to assess current usage, spot opportunities, and favour collaboration with ML experts
 - o 200 participants
 - Survey of ML usage (see later)
 - Most of the material shown today gathered there (but limited to published material)
 - ATLAS ML forum being instantiated, will serve as a forum of discussions within ATLAS and with the outside world

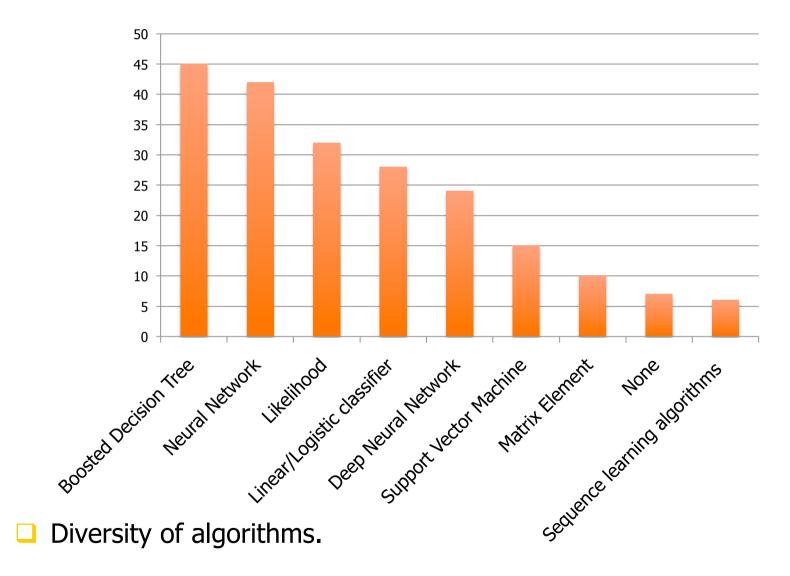
ATLAS ML Survey 1



□ Already experience beyond TMVA. Plan to use new tools.

Openlab ML workshop, ATLAS, 29th April 2016

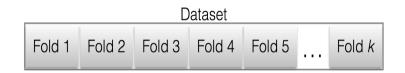
ATLAS ML Survey 2



Validation Techniques

K-fold cross validation allows the estimation of the generalization error

- Not overly dependent on the exact training / testing split
- Average / RMS of k-fold errors gives estimate of true error rate
- Very standard in the non HEP world. Little used in HEP. Being integrated in Root-TMVA, good!



- > Split the dataset into k randomly sampled independent subsets (folds).
- > Train classifier with k-1 folds and test with remaining fold.

Repeat k times.

$$E = \frac{1}{k} \sum_{i=1}^{k} E_i.$$

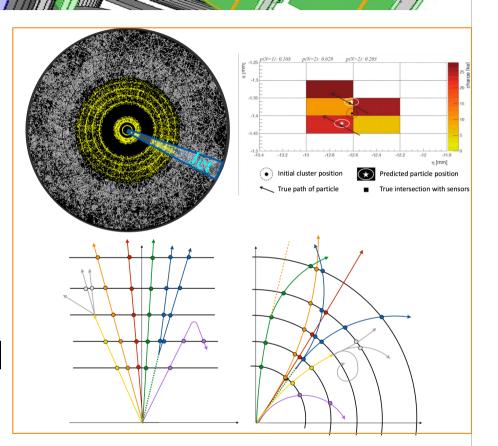
Openlab ML workshop, ATLAS, 29th April 2016

Reconstruction

Clear upcoming challenges as we approach HL-LHC

 Generally, making everything robust to increased pileup, and resource usage will be vital
 New techniques needed

(e.g. TrackML challenge, end of this talk)

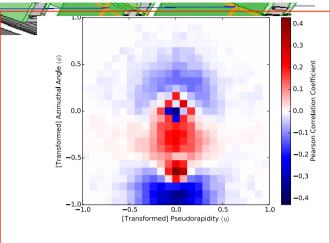


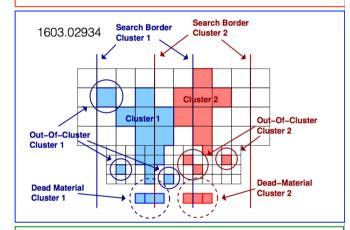
Looking at Data in New ways, using low level info

- Look at data in new ways, potentially a lot of exciting tools available! Just 2 examples:
 - Computer vision and Imaging
 - Already being studied for jet physics
 - Potential for use for e/gamma cluster ID, topocluster ID / calibration, tau clusters?
 - Similar ideas being investigated for ID in LArTPC's
 - Sequence learning / Machine translation
 - Process variable length sequences with recurrent neural networks
 - Fist studies for processing tracks for b-tagging

COGNITIVE SCIENCE Human-level concept learning through probabilistic program induction Brenden M. Lake, ^{1*} Ruslan Salakhutdinov, ² Joshua B. Tenenbaum ²	
parts sub-parts primitives	

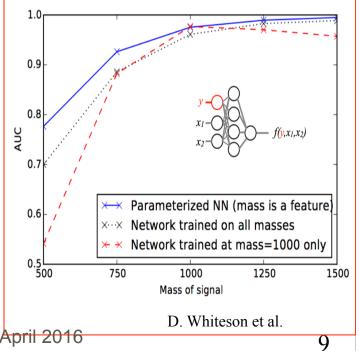
Openlab ML workshop, ATLAS, 29th April 2016





ML in Analysis

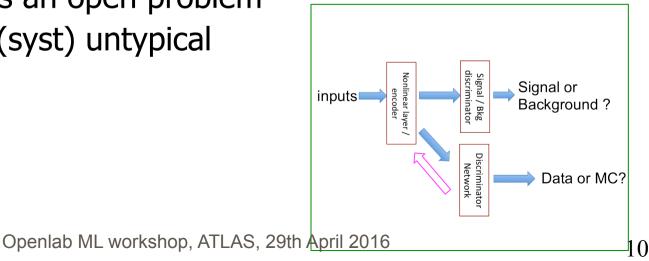
- ML is vital for some analysis
 (e.g. ttH, Single top, B_s→μμ)
- □ For most analyses, ML can help push sensitivity
 - We are very good at doing physics already!
- Tend to replace cut based selection by BDT
 - "We run a lot of BDT's" \rightarrow break down complex analyses into classification problems
- New ideas to ease examination of many signal regions
- ML may help improve statistical analysis techniques
- Take step back: Investigate new ways to look at data,
 - Reconstructing complex final states
 - Interplay between ML and Matrix Element techniques
 - o Different approaches to handle multiple classifications
 - Improved inputs to MVA can lead to significant gains



ML in Analysis : systematics

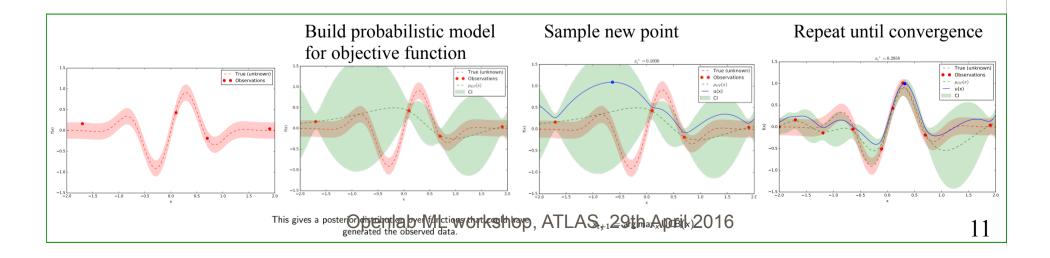
Our experimental papers typically ends with

- measurement = m $\pm \sigma$ (stat) $\pm \sigma$ (syst)
- o σ (syst) systematic uncertainty : known unknowns, unknown unknowns...
- □ Name of the game is to minimize quadratic sum of : $\sigma(\text{stat}) \pm \sigma(\text{syst})$
- \Box ML techniques used so far to minimise σ (stat)
- □ Impact of ML on σ (syst) or even better global optimisation of σ (stat) ± σ (syst) is an open problem
- Worrying about σ(syst) untypical of ML in industry



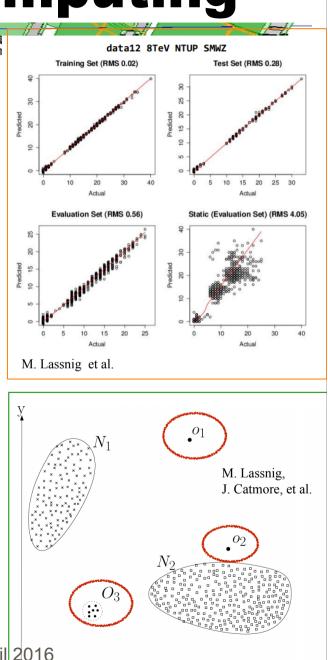
ML in Simulation

- We invest a lot of resources (CPU: ~100k cores *year, human) on very fine tuned simulations:
 - o so far very manual optimisation by super experts
 - o optimisation in many dimensions parameter space, with costly evaluation
- Now turning to more modern techniques e.g.:
 - Bayesian Optimization and Gaussian Processes



ML in Software/Computing

- Workflow and request completion optimization
 - Under dynamic task constraints
- 🗅 Data brokering
 - Limited CPU and world-wide distributed storage resources for an increasing volume of data
 - How best to place data around different sites for optimal access? Where best to send jobs?
- Anomaly detection and prevention
 - Sometimes, things don't work as expected
 - Automated preventive measures
 - Monitor computing infrastructure? Aid Data Quality? MC / Data production validation?
 - Could also be useful for a generic search for new physics, when we don't know exactly what we are looking for?



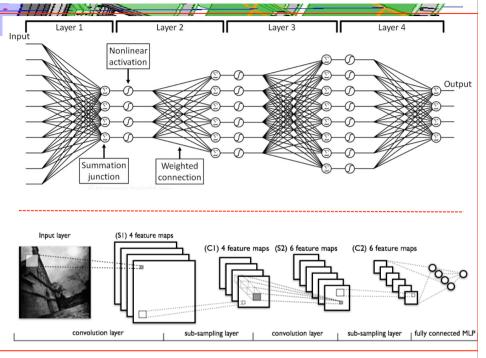
Openlab ML workshop, ATLAS, 29th April 2016

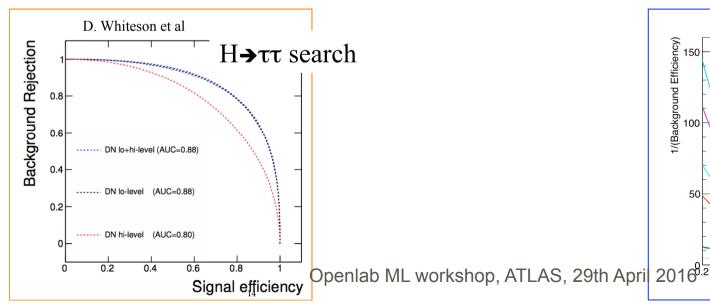
Potential for Deep Learning

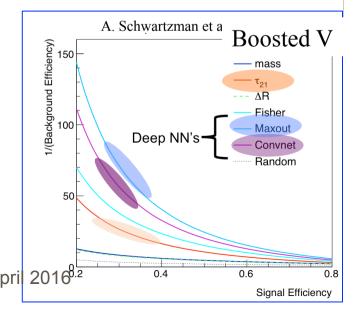
- Variety of studies inside and outside ATLAS show large potential for using DNN's
 - Improving reconstruction (particle identification)
 - Improving Searches and Analyses

0...

These have been seen to be very powerful algorithms in ML, definitely worth more exploration on ATLAS







Tools

Root-TMVA heavily used, but it is limited

- Easy to use on lxplus and local batch systems, nicely integrated to Root
- But does not currently have many modern algorithms / validation techniques
- Can lead to large usage of memory
- We understand new development efforts underway, very welcome
- Many people trying new algorithms / techniques are using common data science tools (Scikit-learn, Xgboost, Theano, TensorFlow,...)
 - Such tools not available on lxplus
 - Quite some "plumbing" to integrate these tools in typical HEP workflow
 - Common installations for popular tool would lower barrier to use in ATLAS

ML platforms

- Training time can become prohibitive (days), especially Deep Learning, especially with large datasets
- With hyper-parameter optimisation, crossvalidation, number of trainings for a particular application large ~100
- We're exploring ML platforms :
 - Dedicated cluster (with GPUs)
 - Relevant software preinstalled (VM)
 - Possibility to load large datasets (GB to TB)

Open Data

- Public dataset are essential to collaborate (beyond talking over beer/coffee) on new ML techniques with ML experts (or even physicists in other experiments)
 - o can share without experiments NDA
- Some collaborations built on just generator data (e.g. Pythia) or with simple detector simulation e.g. Delphes
 - Good for a start, but inaccurate
- Effort to have better open simulation engine (e.g. ACTS for tracking, see later)
- □ Role of CERN Open Data portal:
 - We (in ATLAS) initially saw its use for outreach purposes
 - But after all ML collaboration is a kind of scientific outreach
 - →We've uploaded there in 2015 the data from Higgs Machine Learning challenge (essentially 4-vectors from full G4 ATLAS simulation Higgs->tautau analysis)
 - We consider releasing more datasets dedicated to ML studies

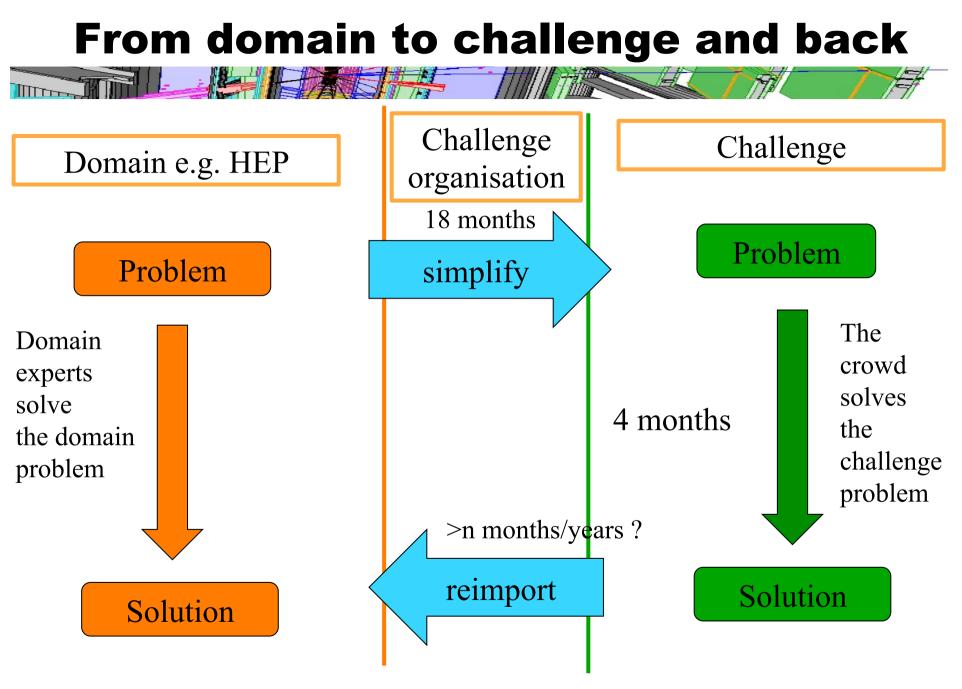
Challenges (competition)

Challenges are essentially a way to create a buzz around an open dataset dressed with a benchmark

- o HiggsML (ATLAS) 2014
- FlavourML (LHCb) 2015
- o future TrackML (ATLAS+CMS) 2016?
- Buzz in non-HEP world to get the attention of ML specialists
- More on this now

HiggsML in a nutshell

- Why not put some ATLAS simulated data on the web and ask data scientists to find the best machine learning algorithm to find the Higgs ?
 - Instead of HEP people browsing machine learning papers, coding or downloading possibly interesting algorithm, trying and seeing whether it can work for our problems
- Challenge for us : make a full ATLAS Higgs analysis simple for non physicists, but not too simple so that it remains useful
- □ Also try to foster long term collaborations between HEP and ML
- Do not underestimate the time to learn common languages (e.g. hand waving explanation of S/sqrt(B) not enough)
- Do not underestimate the percolation time :
 - 1) New ML ideas → 2) Demo on toy data set → 3) Demo in real ATLAS analysis → 4) published ATLAS analysis ==> we're still between 1 and 2 for most new ideas



Openlab ML workshop, ATLAS, 29th April 2016

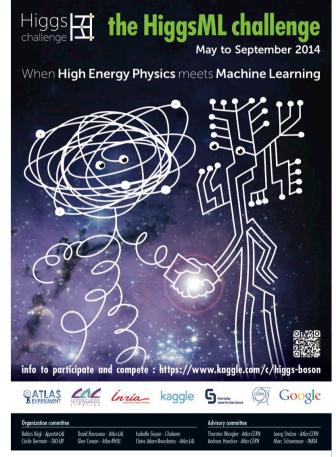
Higgs Machine learning challenge

See talk DR CTD2015 Berkeley

- An ATLAS Higgs signal vs background classification problem, optimising statistical significance
- Ran in summer 2014
- 2000 participants (largest on Kaggle at that time)
- Outcome
 - Best significance 20% than with Root-TMVA
 - BDT algorithm of choice in this case where number variables and number of training events limited (NN very slightly better but much more difficult to tune)
 - XGBoost best BDT on the market (quite wide spread nowadays)
 - Wealth of ideas, documented in <u>JMLR proceedings v42</u>
 - Still working on what works in real life what does not
 - Raised awareness about ML in HEP

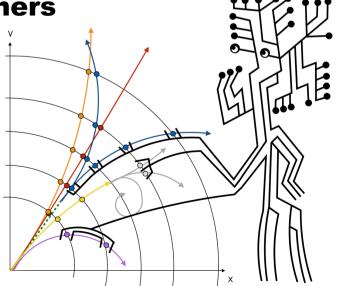
Also:

- Winner Gabor Melis hired by DeepMind
- Tong He, co-developper of XGBoost, winner of special "HEP meets ML" price got a PhD grant and US visa
 Openlab ML workshop, ATLAS, 29th April 2016



Future Tracking Machine Learning challenge

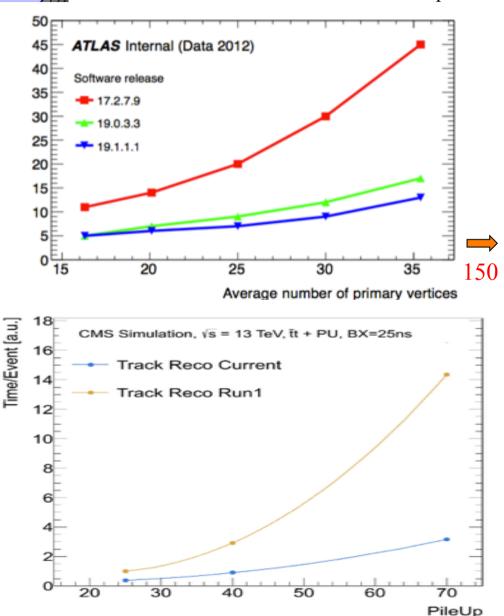
A collaboration between ATLAS and CMS physicists, and Machine Learners

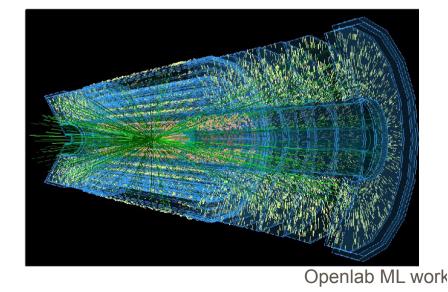


TrackML : Motivation 1

Graeme Stewart ECFA HL-LHC workshop 2014

- Tracking (in particular pattern recognition) dominates reconstruction CPU time at LHC
- HL-LHC (phase 2) perspective : increased pileup :
 - Run 1 (2012): <>~20
 - o Run 2 (2015): <>~30
 - Phase 2 (2025): <>~150
- CPU time quadratic/exponential extrapolation (difficult to quote any number)





TrackML : Motivation 2

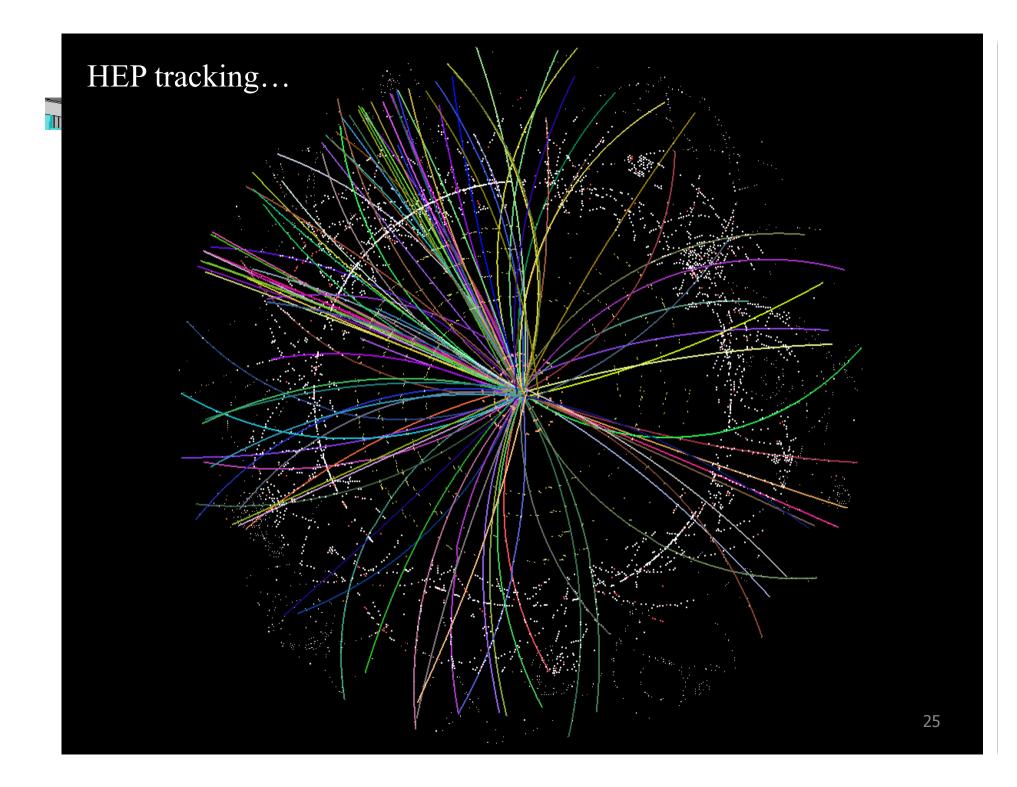
□ LHC experiments future computing budget flat (at best)

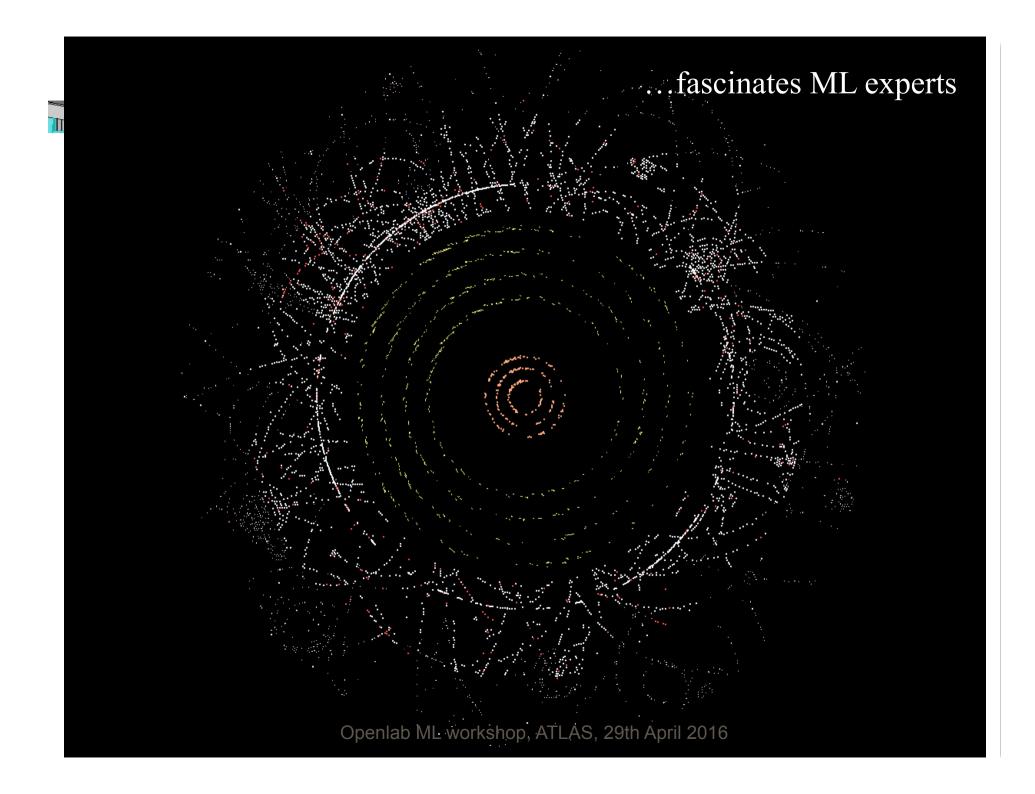
- Installed CPU power per \$==€==CHF expected increase factor ~10 in 10 years
- Experiments plan on increase of data taking rate ~10 as well (~1kHz to 10kHz)
- ➡ HL reconstruction at mu=150 need to be as fast as Run1 reconstruction at mu=20
- \Box \rightarrow requires very significant software improvement, factor 10-100
- Large effort within HEP to optimise software and tackle micro and macro parallelism. Sufficient gains for Run 2 but still a long way for HL-LHC.
- □ >20 years of LHC tracking development. Everything has been tried?
 - Maybe yes, but maybe algorithm slower at low lumi but with a better scaling have been dismissed ?
 - Maybe no, brand new ideas from ML (i.e. Convolutional NN)
- Need to engage a wide community to tackle this problem

TrackML : engaging Machine Learners

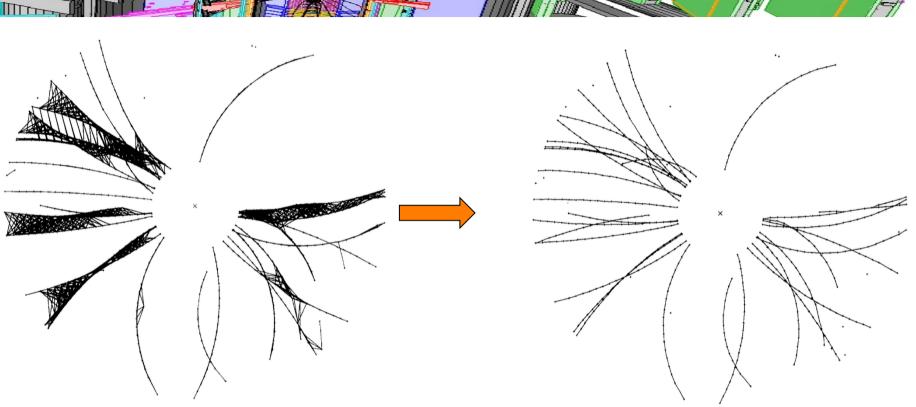
Suppose we want to improve the tracking of our experiment

- We read the literature, go to workshops, hear/read about an interesting technique (e.g. ConvNets, MCTS...). Then:
 - Try to figure by ourself what can work, and start coding \rightarrow traditional way
 - Find an expert of the new technique, have regular coffee/beer, get confirmation that the new technique might work, and get implementation tips→better
- ...repeat with each technique...
- Much much better:
 - Release a data set, with a benchmark, and have the expert do the coding him/ herself
 - → he has the software and the know-how so he'll be (much) faster even if he does not know anything about our domain at the beginning
 - →engage multiple techniques and experts simultaneously (e.g. 2000 people participated to the Higgs Machine Learning challenge) in a comparable way
 - o →even better if people can collaborate
 - \rightarrow a challenge is a dataset with a benchmark and a buzz
 - Looking for long lasting collaborations beyond the challenge





TrackML : An early attempt



□ Stimpfl-Abele and Garrido (1990) (ALEPH)

- All possible neighbor connections are built, the correct ones selected by the NN (not used in production)
- □ Also PhD Vicens Gaitan 1993, winner of Flavour of Physics challenge

TrackML :CPU measurement

- Contrary to HiggsML or Flavour of Physic challenge need to evaluate CPU time
 - We know already how to solve the problem, but not quick enough (by factors)
 - CPU time to find the tracks
 - Cap on memory used (e.g. one x86-64 core with 2GB)
 - Training time unlimited
- Some platforms (see AutoML, Codalab, Topcoder) now allow to automatically upload, compile and run software
 - \rightarrow well defined hardware (CPU and memory available)
 - →uniform comparison
 - Could also use an Amazon instance
- Positive side-effect : limit diversity of software languages and libraries
- \Box Also the training dataset is very large (~1TB), better left on the platform
- We're more interested in the detailed algorithm (as it would be explained in a technical paper) rather than the software itself (but we do want to see the software)
- We're more interested in new approaches than in super-optimised version of old approaches
- We're looking for industry involvement there : a powerful platform to handle 100-1000 training per day on 1TB dataset

Conclusion

Machine Learning techniques widely used on ATLAS

- Recent explosion of novel (for HEP) ML techniques, novel applications for Analysis, Reconstruction, Simulation, Trigger, and Computing
- ATLAS Machine Learning group being set up by June 2016
- Building collaborations with ML scientists on a variety of issues
- Looking for powerful hardware+software platforms for:
 - o Deep NN training
 - Tracking ML challenge