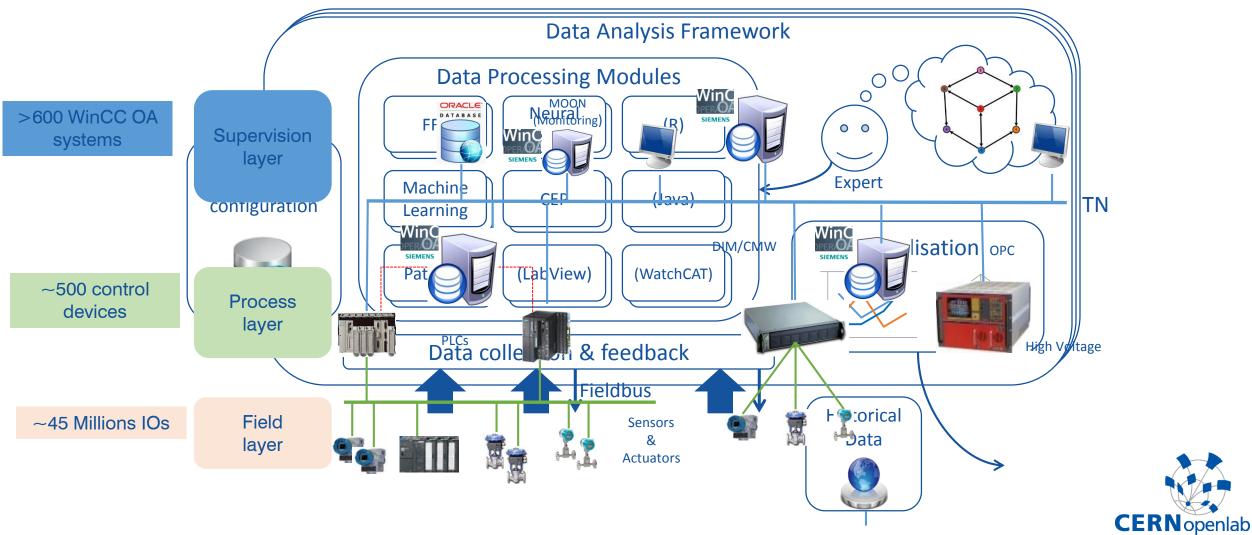
Challenges for Industrial Control Systems

CERN openlab Machine Learning and Data Analytics workshop

29 April 2016


Axel Voitier

<u>Filippo Tilaro</u>

Manuel Gonzalez Berges

With input from many CERN colleagues

Our vision of the analysis fraction of the ana

Main expected features

- Integration with CERN control system
- Scalability
 - Scale the computation load across several hosts (OpenStack VMs)
 - Distributed storage for temporary results
- Merging events and numerical data analysis
 - Predictive trending
 - Temporal reasoning (CEP)
 - Statistical Analysis
- Possibility to prototype additional plug-ins and algorithms
 - Agree on a general API for new algorithm definition and integration
 - Integration with 'R'
 - Data analysis flow definition in building blocks
- Reporting
 - Graphical visualization of huge list of signals/results
 - Interface to provide feedback to external systems (i.e.: WinCC OA)
- Conversion into a Service
 - On-line mode for continuous control system monitoring over custom time-windows
 - Support for historical analysis
- Data management
 - Different sampling rates / gap
 - Custom data model (i.e.: temperature in K/C)
 - Custom data access (i.e.: vector vs sequence)

CERN control system use-cases

Based on real examples

Use-cases classification

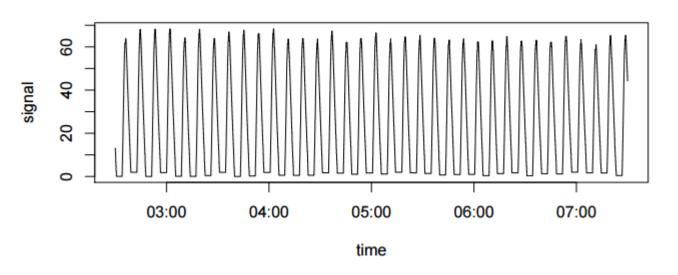
Online monitoring

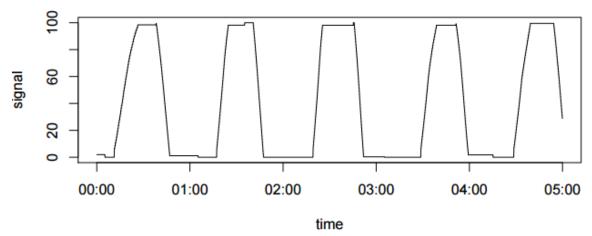
 Continuous service to analyse the system status and inform operators in case of fault detection

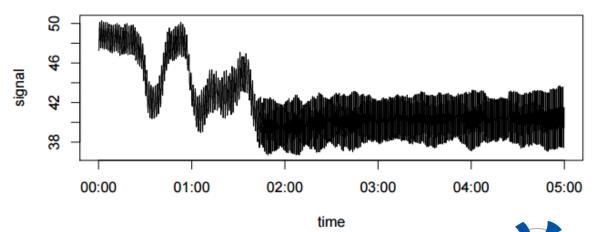
Fault diagnosis

 "Forensics" analysis of system faults that have already happened in the past. In some cases root-cause analysis

Engineering design

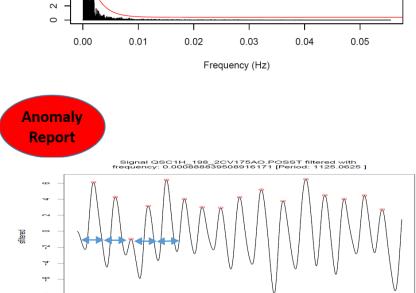

 Analysis of historical data to draw conclusions about system behaviours which could be helpful to improve / optimize the system under analysis


Online monitoring


- Oscillation analysis in cryogenics valves (CRYO, CV)
- Online analysis of control alarms (MOON)
- LHC dashboard (CRYO)

Oscillation analysis for cryogenics valves

- Goal: detect whenever a signal is oscillating in any anomalous way. Impact on:
 - Control system stability
 - Increased communication load
 - Maintenance (use of actuators)
 - Safety
 - Performances (Physic time)

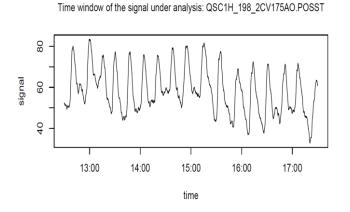

CERN openlab

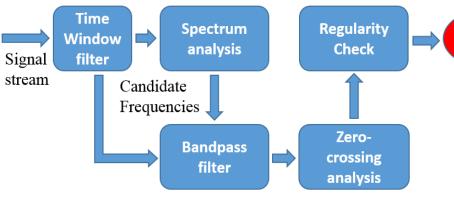
Oscillation analysis flow

Amplitude

Use of machine learning:

- Threshold learning model
- Dynamic learning
- Associate the oscillation with system status conditions
- On-line analysis:
 - > 3000 sensors
 - Continuous analysis

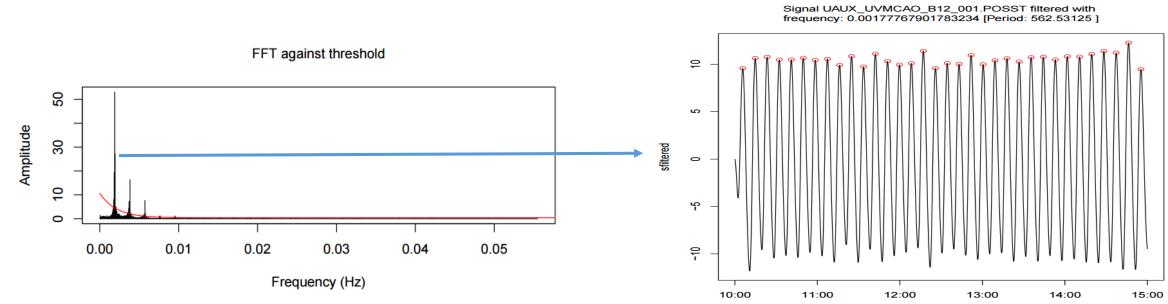



15:00

16:00

CERN openlab

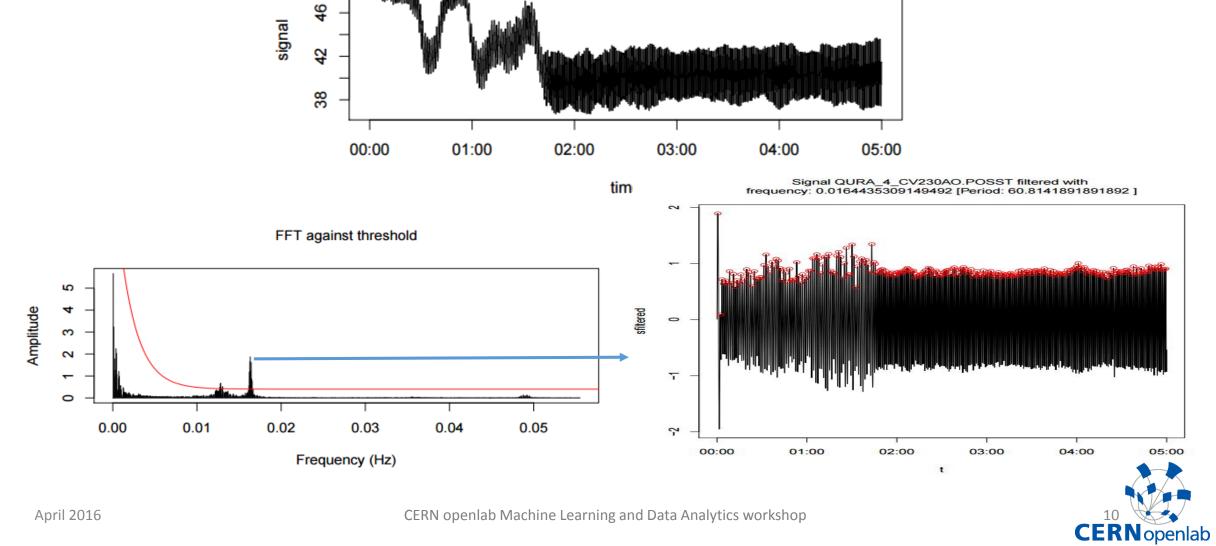
FFT against threshold



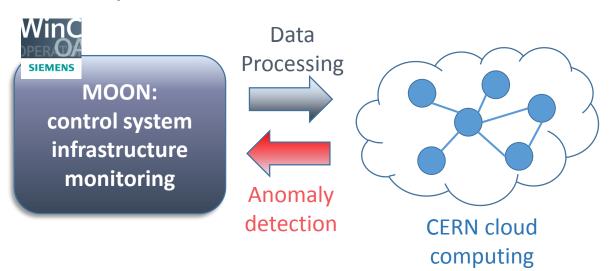
Oscillation detection Ex#1

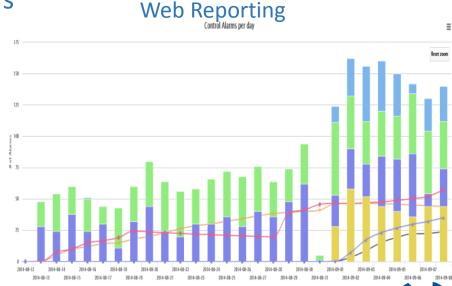
CERNopenlab

Time window of the signal under analysis: UAUX_UVMCAO_B12_001.POSST



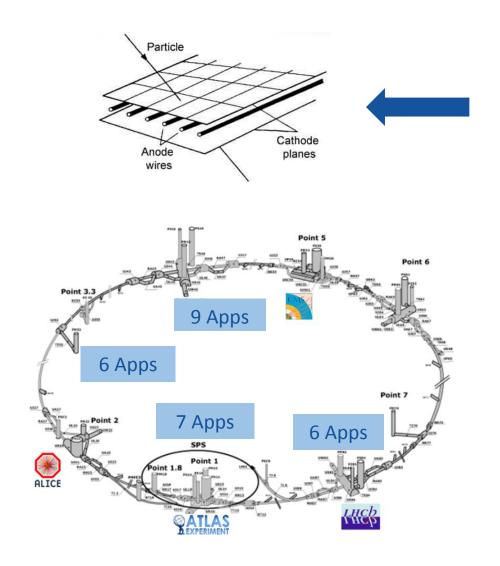
Oscillation detection Ex#2

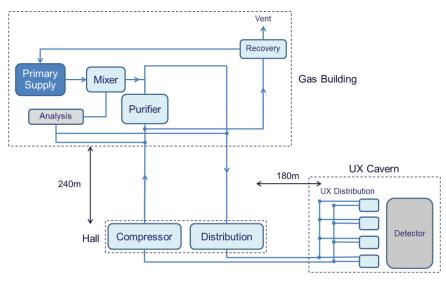

Time window of the signal under analysis: QURA_4_CV230AO.POSST


50

Online analysis of control alarms

- Alarms analysis to detect anomalies or abnormal behaviors for thousands of devices
- Events sequence mining
 - to understand the alarms' dependencies
 - for short term forecast
- Threshold learning algorithm and outliers detection techniques
 - Based on alarms' distribution
 - Parallelization using the CERN OpenStack cluster
- Graphical visualization of the anomalies/outliers

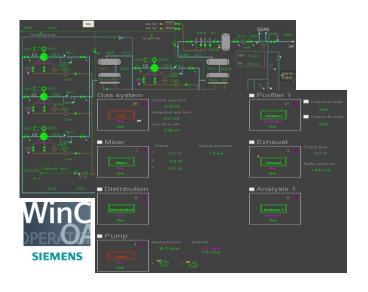

CERNopenlab


Fault diagnosis (off-line)

- Root cause analysis for control alarms avalanches (GAS system)
- Anomaly detection by sensors data mining

An example:

Gas control system @CERN



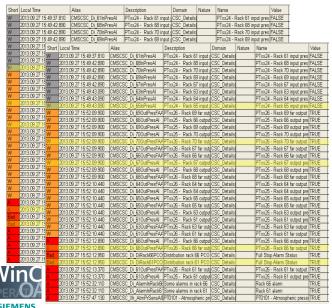
- 28 gas systems deployed around LHC
- 4 Data Server, 51 PLCs (29 for process control, 22 for flow-cells handling)
- Essential for particle detection
- Reliability and stability are critical
 - Any variation in the gas composition can affect the accuracy of the acquired data
- ~18 000 physical sensors / actuators

Alarm flooding problem

Short	Local Time	Alias	Description	Domain	Nature	Name	Value
W	2013.09.27 15:49:37.810	CMSCSC Di 61InPresAl	PTxx24 - Rack 61 input	CSC Details		PTxx24 - Rack 61 input pres	FALSE
W	2013.09.27 15:49:42.890	CMSCSC_Di_68InPresAl	PTxx24 - Rack 68 input	CSC_Details		PTxx24 - Rack 68 input pres	FALSE
W	2013.09.27 15:49:42.890	CMSCSC Di 70InPresAl	PTxx24 - Rack 70 input	CSC Details		PTxx24 - Rack 70 input pres	FALSE
W	2013.09.27 15:49:42.890	CMSCSC Di 69InPresAl	PTxx24 - Rack 69 input	CSC Details		PTxx24 - Rack 69 input pres	FALSE
W	2013.09.27 15:49:42.890	CMSCSC Di 67InPresAl	PTxx24 - Rack 67 input	CSC Details		PTxx24 - Rack 67 input pres	FALSE
W	2013.09.27 15:49:43.090	CMSCSC Di 63InPresAl	PTxx24 - Rack 63 input	CSC Details		PTxx24 - Rack 63 input pres	FALSE
W	2013.09.27 15:49:43.090	CMSCSC_Di_64InPresAl	PTxx24 - Rack 64 input	CSC_Details		PTxx24 - Rack 64 input pres	FALSE
W	2013.09.27 15:49:43.090	CMSCSC_Di_65InPresAl	PTxx24 - Rack 65 input	CSC_Details		PTxx24 - Rack 65 input pres	FALSE
W	2013.09.27 15:52:09.900	CMSCSC Di 69OutPresFA4	PTxx26 - Rack 69 far out	CSC Details		PTxx26 - Rack 69 far output	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 66OutPresAl	PTxx25 - Rack 66 output	CSC Details		PTxx25 - Rack 66 output pre	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 69OutPresAl	PTxx25 - Rack 69 output	CSC Details		PTxx25 - Rack 69 output pre	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 700utPresAl	PTxx25 - Rack 70 output	CSC Details		PTxx25 - Rack 70 output pre	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 700utPresFAA	PTxx26 - Rack 70 far out	CSC Details		PTxx26 - Rack 70 far output	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 67OutPresFAA	PTxx26 - Rack 67 far out	CSC Details		PTxx26 - Rack 67 far output	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 66OutPresFAA	PTxx26 - Rack 66 far out	CSC Details		PTxx26 - Rack 66 far output	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 67OutPresAl	PTxx25 - Rack 67 output	CSC Details		PTxx25 - Rack 67 output pre	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 68OutPresAl	PTxx25 - Rack 68 output	CSC Details		PTxx25 - Rack 68 output pre	TRUE
W	2013.09.27 15:52:09.900	CMSCSC Di 68OutPresFA4	PTxx26 - Rack 68 far out	CSC Details		PTxx26 - Rack 68 far output	TRUE
W	2013.09.27 15:52:10.440	CMSCSC Di 64OutPresFAA	PTxx26 - Rack 64 far out	CSC Details		PTxx26 - Rack 64 far output	TRUE
W	2013.09.27 15:52:10.440	CMSCSC Di 64OutPresAl	PTxx25 - Rack 64 output	CSC Details		PTxx25 - Rack 64 output pre	TRUE
W	2013.09.27 15:52:10.440	CMSCSC Di 65OutPresAl	PTxx25 - Rack 65 output	CSC Details		PTxx25 - Rack 65 output pre	TRUE
W	2013.09.27 15:52:10.440	CMSCSC Di 65OutPresFA4	PTxx26 - Rack 65 far out	CSC Details		PTxx26 - Rack 65 far output	TRUE
W	2013.09.27 15:52:10.440	CMSCSC Di 63OutPresAl	PTxx25 - Rack 63 output	CSC Details		PTxx25 - Rack 63 output pre	TRUE
W	2013.09.27 15:52:10.440	CMSCSC Di 61OutPresAl	PTxx25 - Rack 61 output	CSC Details		PTxx25 - Rack 61 output pre	TRUE
W	2013.09.27 15:52:10.440	CMSCSC_Di_63OutPresFA4	PTxx26 - Rack 63 far out	CSC_Details		PTxx26 - Rack 63 far output	TRUE
W	2013.09.27 15:52:10.440	CMSCSC_Di_61OutPresFA4	PTxx26 - Rack 61 far out	CSC_Details		PTxx26 - Rack 61 far output	TRUE
Ą	2013.09.27 15:52:12.890	CMSCSC Di 66OutPresAl	PTxx25 - Rack 66 output	CSC Details		PTxx25 - Rack 66 output pre	TRUE
Ą	2013.09.27 15:52:12.890	CMSCSC Di 66OutPresFA4	PTxx26 - Rack 66 far out	CSC Details		PTxx26 - Rack 66 far output	TRUE
Bad	2013.09.27 15:52:12.950	CMSCSC_Di_DiRack66PCO	Distribution rack 66 PCO	CSC_Details		Full Stop Alarm Status	TRUE
Bad	2013.09.27 15:52:12.950	CMSCSC_Di_DiRack61PCO	Distribution rack 61 PCO	CSC_Details		Full Stop Alarm Status	TRUE
Ą	2013.09.27 15:52:13.370	CMSCSC_Di_61OutPresFA4	PTxx26 - Rack 61 far out	CSC_Details		PTxx26 - Rack 61 far output	TRUE
Ą	2013.09.27 15:52:13.370	CMSCSC Di 61OutPresAl	PTxx25 - Rack 61 output	CSC Details		PTxx25 - Rack 61 output pre	TRUE
A.	2013.09.27 15:52:32.110	CMSCSC Di AlarmInRack66	Some alarms in rack 66	CSC Details		Rack 66 alarm	TRUE
A T	2013.09.27 15:52:32.110	CMSCSC Di AlarmInRack6	Some alarms in rack 61	CSC Details		Rack 61 alarm	TRUE
	2013 09 27 15:57:47 130	CMSCSC Xh AtmPrSensAll	PTD101 - Atmospheric no	CSC Details		PT0101 - Atmospheric pressi	TRUE

8 Fault in the distribution system

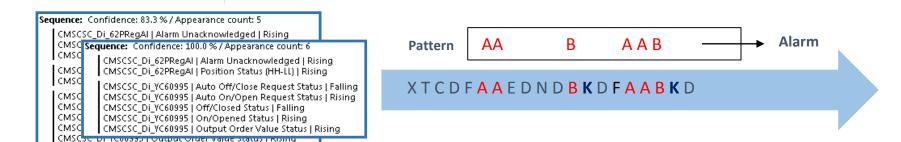
Alarms flooding


- **Diagnosing a fault is complex:** it may take weeks!
 - Alarms flooding: a single fault can generate up to a thousand of events
 - Number of different sequences:

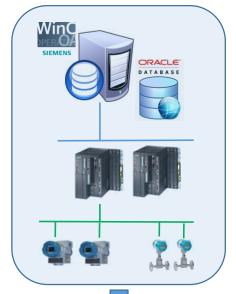
 6 x10²⁹⁷ from: n!/(n-k)! , n=max seq. length, k=n/10

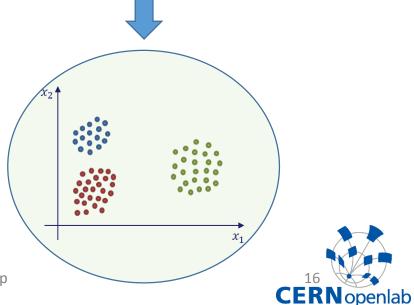
- A single fault can stop the whole control process
- The 1st alarm is not necessarily the most relevant for the diagnosis
- Alarm generation depends on the system status

Events stream analysis

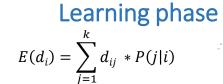


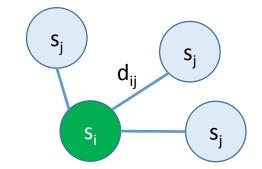
Event lists generatedby the same fault

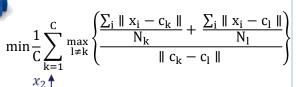


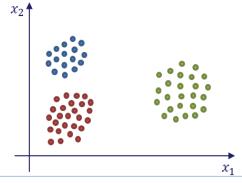


Anomaly detection by sensors data mining

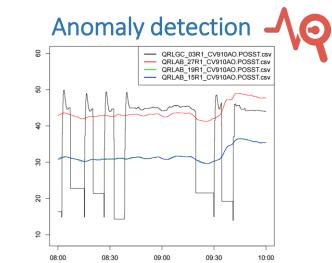

- Goal: Detect abnormal or unforeseen system behaviours
- Possible issues:
 - Sensors faults/glitches
 - Hardware failures/degradations
 - False measurements
 - Wrong tuning/structure
 - •
- Sensors mining to learning:
 - Logical relations
 - Physical relations
- Challenges:
 - Normal/anomalous boundaries are not precise
 - Different application domains/systems
 - Mostly unsupervised training
 - Dynamic system => dynamic model
 - Different types of anomaly
 - Noise and duration of an anomaly

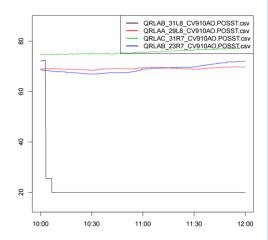





Machine learning algorithms for anomaly detection in Cryo

- Building a model based on historical data
- 3 different algorithms
 - Correlation index and KNN-graph
 - K-Mean clustering and probability model
 - Statistics expert-based model





Sensors data

extraction

- Use the previous model to detect anomalies
- On-line analysis over a time window of 1 day
- Continuous analysis against thousands of sensors

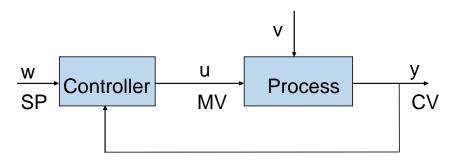
CERNopenlab

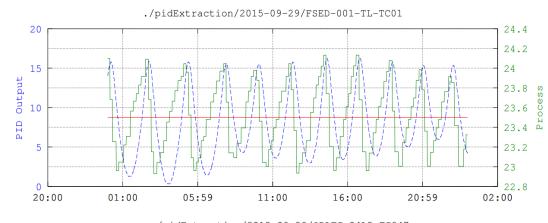
LHC Logging

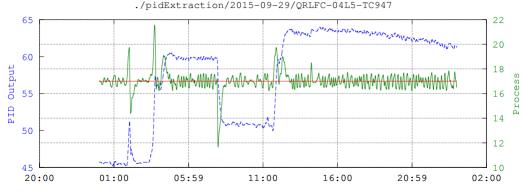
Service

Engineering design

- PID supervision (CRYO, CV)
- Recommendation system for WinCC OA users (PSEN)


Evaluation of PID supervision


> PID performance has an impact on:

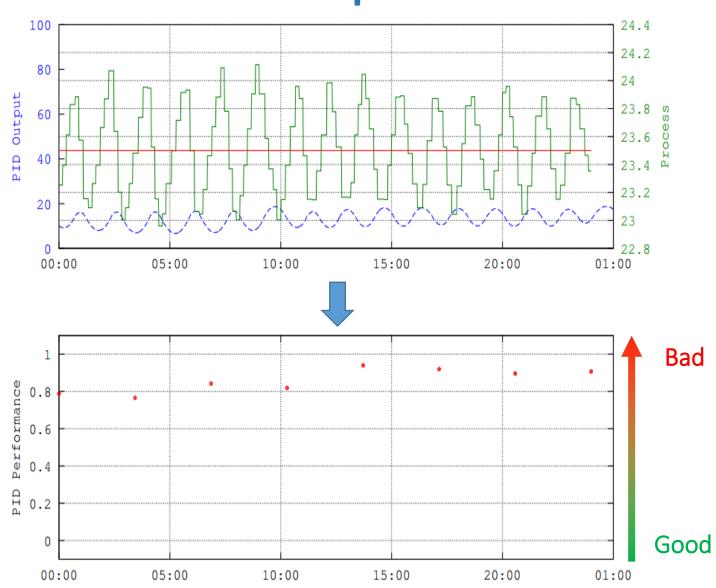

- Process security
- Quality of physics
- Maintenance (stress on the equipment)

> Issues:

- Many sources of faults/malfunctions
- System status dependency
- External disturbances/factors
- Bad tuning
- Wrong controller type/structure
- Slow degradation

PID supervision Ex#1

> PID anomaly detection:

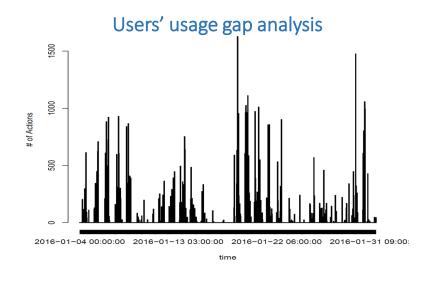

- Learning each PID model from the historical data
- Extraction of similar PID models
- Comparison of PID behaviours:
 - on the single PID level
 - similar PID

Efficiency of control process:

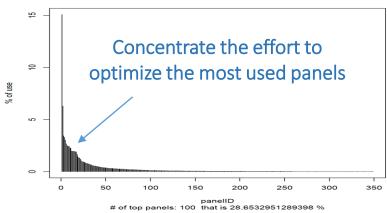
- Comparison of PID performances
- Time/actions taken/energy consumed to reach steady points
- Stability of the controlled variable


> In collaboration with the University of Valladolid

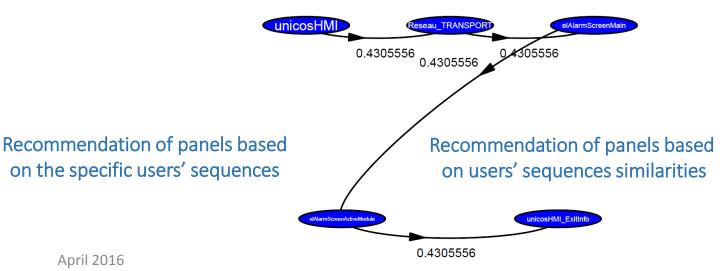
Based on: "Performance monitoring of industrial controllers based on the predictability of controller behaviour", R. Ghraizi, E. Martinez, C. de Prada

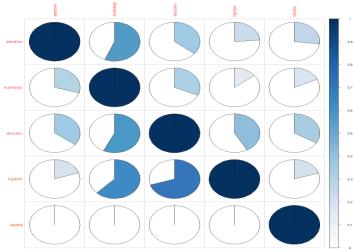


time

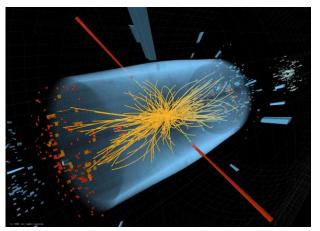

PID supervision Ex#2

Recommendation system for WinCC OA users





Users' frequent sequences



Jaccard Sequences Similarity

Data Analytics Benefits

- Increased System Reliability
 - Minimized forced outages
- Complete data analysis
 - Reduced service effort: weeks → hours
- > 24/7 Expert Knowledge Availability
 - One central knowledge base

- **>** Big data visualization
- > Forecast system status and take proper actions in time
- > Prevent possible faults and system downtime

Diagnosis support

- Identify root causes
- More accurate analysis
- Accelerate analysis From weeks to hours
- > Identify hidden patterns

Engineering support

- > Evaluate and improve operational performance
- Increase reliability and efficiency by design
- > Lead control system decisions

Use-cases: a partial list

Online monitoring

- Control System Health
- Electrical power quality of service
- Looking for heat in superconducting magnets
- Oscillation in cryogenics valves
- Discharge of superconducting magnets heaters
- Trending and forecast of the control process behavior

> Faults diagnosis

- Anomalies in the process regulation
- PLC anomalies
- Data loss detection
- Root-cause analysis for complex WinCC OA installations
- Analysis of sensors functioning and data quality
- Analysis of OPC-CAN middleware
- Analysis of electrical power cuts
- Cryogenic system breakdowns

> Engineering design

- Electrical consumption forecast
- Efficiency of electric network
- Predictive maintenance of control systems elements
- Predictive maintenance for control disks storage
- Vibration analysis
- Efficiency of control process
 - ...

