Supersymmetric gauge theories, conformal blocks and isomonodromic deformations

Andrei Marshakov
Lebedev Institute, ITEP \& NRU HSE, Moscow

CERN, TH String theory seminar

July 2016

Plan:

- Introduction: "AGT-correspondence", Whittaker elements and (exact?) conformal blocks;
- W-algebras and isomonodromic deformations ($\mathfrak{s l}_{N}$ or $\mathfrak{g l}_{N}$, arbitrary \mathfrak{g} ?);
- Exact solution for the quasi-permutation or twist fields.
P.Gavrylenko and AM: JHEP 05 (2014)097, JHEP 02 (2016) 181, arXiv:1605.04554;
M.Bershtein, P.Gavrylenko and AM: in progress.

"AGT correspondence" (LMN-2003?)

Harmonic oscillator $\left[\alpha, \alpha^{\dagger}\right]=1, H=\alpha^{\dagger} \alpha$

$$
\begin{gather*}
\alpha|0\rangle=0, \quad \mathcal{H}=\bigoplus_{n \geq 0} \frac{\left(\alpha^{\dagger}\right)^{n}}{\sqrt{n!}}|0\rangle \tag{1}\\
e^{\alpha^{\dagger}}|0\rangle=|\Psi\rangle \in \mathcal{H}: \quad \alpha|\Psi\rangle=|\Psi\rangle
\end{gather*}
$$

Whittaker matrix element $(Z=\mathcal{B}=\mathcal{G})$:

$$
\begin{equation*}
\mathcal{G}(t) \simeq\langle\Psi| e^{t \alpha^{\dagger} \alpha}|\Psi\rangle=e^{e^{t}} \tag{2}
\end{equation*}
$$

A free field 2d CFT

$$
\begin{gather*}
J(z)=i \partial \phi(z)=\sum_{n \in \mathbb{Z}} \frac{\alpha_{n}}{z^{n+1}} \\
T(z)=\frac{1}{2}: J(z)^{2}:=\sum_{n \in \mathbb{Z}} \frac{L_{n}}{z^{n+2}} \tag{3}
\end{gather*}
$$

so that

$$
\begin{equation*}
\mathcal{G}(a, t)=\left\langle\Psi_{a}\right| e^{t L_{0}}\left|\Psi_{a}\right\rangle=\exp \left(\frac{1}{2} t a^{2}+e^{t}\right) \tag{4}
\end{equation*}
$$

for

$$
\begin{gather*}
\alpha_{1}\left|\Psi_{a}\right\rangle=\left|\Psi_{a}\right\rangle, \quad \alpha_{0}\left|\Psi_{a}\right\rangle=a\left|\Psi_{a}\right\rangle \tag{5}\\
\alpha_{n}\left|\Psi_{a}\right\rangle=0, \quad n>1
\end{gather*}
$$

or

$$
\begin{equation*}
\left|\Psi_{a}\right\rangle=e^{\alpha-1}|a\rangle, \quad \alpha_{n}|a\rangle=0, \quad n>0, \quad \alpha_{0}|a\rangle=a|a\rangle \tag{6}
\end{equation*}
$$

- $\mathcal{G}(a, t)=\left\langle\Psi_{a}\right| e^{t L_{0}}\left|\Psi_{a}\right\rangle$ is Nekrasov function ($U(1)$ gauge theory);
- $\mathcal{F}=\log \mathcal{G}=\frac{1}{2} a^{2} t+e^{t}$ solves

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{F}}{\partial t^{2}}=\exp \frac{\partial^{2} \mathcal{F}}{\partial a^{2}} \tag{7}
\end{equation*}
$$

and dual string theory (GW potential of \mathbb{P}^{1} or OP "isomonodromic" tau-function).

- Family of Toda curves $\wedge^{N}\left(w+\frac{1}{w}\right)=P_{N}(\lambda), d \lambda, \frac{d w}{w}, d S=$ $\lambda \frac{d w}{w}$. Solution for $N=1$: $\wedge\left(w+\frac{1}{w}\right)=\lambda-v, a=v, \wedge^{2}=e^{t}$.

Conformal blocks

Pictorially, the conformal block (of Virasoro algebra) is

(a part of) 4-point function on sphere

$$
\mathcal{G}\left(\Delta,\left\{\Delta_{f}\right\} ; q\right)=\left\langle\left.\Phi_{\Delta_{\infty}}(\infty) \Phi_{\Delta_{1}}(1)\right|_{\Delta} \Phi_{\Delta_{q}}(q) \Phi_{\Delta_{0}}(0)\right\rangle
$$

- Free field $\Delta_{f}=\frac{1}{2} \theta_{f}^{2}, \mathcal{G}\left(\Delta,\left\{\Delta_{f}\right\} ; q\right)=q^{\theta_{0} \theta_{q}}(1-q)^{\theta_{q} \theta_{1}}$. After proper rescaling $q \sim \frac{1}{\theta_{q} \theta_{1}} e^{t},(1-q)^{\theta_{q} \theta_{1}} \rightarrow e^{e^{t}}$.
- Twist fields (Alesha Zamolodchikov, 80-s) at $c=1$:

$$
\begin{gather*}
\left\langle\left.\sigma(\infty) \sigma(1)\right|_{\Delta(a)=a^{2}} \sigma(q) \sigma(0)\right\rangle= \\
=\frac{16 \exp (2 \pi i \mathcal{F}(a ; \tau))}{q^{1 / 8}(1-q)^{1 / 8} \theta_{00}(\tau)} \tag{8}
\end{gather*}
$$

- $\Phi_{1 / 16}(q)=\sigma(q)$: corresponding $|\sigma\rangle$ is an eigenstate of L_{0}, but not of J_{0} - arbitrary intermediate $\Delta(a)$;
- W-theory: not really defined. For the integer central charges - monodromy operator in the multi-component fermionic theory.

Old puzzle: the IR quadratic prepotential

$$
\begin{gather*}
\mathcal{F}(\mathrm{a})=\frac{1}{2 \pi i} \mathrm{a}^{2} \log q_{I R}= \\
=\frac{a^{2}}{2 \pi i}(\underbrace{\log q}_{\text {classical }}-\underbrace{\log 16}_{\text {perturbative }}+\frac{q}{2}+\frac{13}{64} q^{2}+\frac{23}{192} q^{3}+\ldots) \tag{9}
\end{gather*}
$$

comes from

$$
\begin{gather*}
\eta^{2}=\xi(\xi-1)(\xi-q), \quad d S \sim a \frac{d \xi}{\eta} \\
q=\frac{\theta_{10}^{4}\left(q_{I R}\right)}{\theta_{00}^{4}\left(q_{I R}\right)}=16 q_{I R} \prod_{n=1}^{\infty}\left(\frac{1+q_{I R}^{2 n}}{1+q_{I R}^{2 n-1}}\right)^{8} \tag{10}
\end{gather*}
$$

where $q_{I R}=e^{i \pi \tau}$.

Quiver gauge theories: two pictures for the $\mathfrak{g}^{\otimes 3}$ gauge (blue!) theory

Still there exists exact 4d/2d correspondence.

For the $\mathfrak{g}=s u(2)$ quivers the curve is hyperelliptic

$$
\begin{equation*}
x^{2}=\langle T(z)\rangle=\sum_{j=1}^{n}\left(\frac{\Delta_{j}}{\left(z-z_{j}\right)^{2}}+\frac{u_{j}}{z-z_{j}}\right) \tag{11}
\end{equation*}
$$

Statement: for all diagrams with massless states at "sicilian vertices" the prepotential

$$
\begin{equation*}
\left.\mathcal{F}(\mathbf{a}, \mathbf{q})\right|_{\cup_{\mathcal{V}} \sum_{i \in \mathcal{V}_{i}} a_{i}=0}=\frac{1}{2} \sum_{\alpha, \beta=1}^{\tilde{g}} a_{\alpha} \mathcal{T}_{\alpha \beta}(\mathbf{q}) a_{\beta} \tag{12}
\end{equation*}
$$

becomes the quadratic form with period matrix $\mathcal{T}_{\alpha \beta}(\mathbf{q})$ of reduced hyperelliptic curve of genus

$$
\begin{equation*}
\tilde{g}=g-V=n-3-\left(\frac{1}{2} n-2\right)=\frac{1}{2} n-1 \tag{13}
\end{equation*}
$$

$V=|\mathcal{V}|=\frac{1}{2} n-2$ is the number of triple vertices $\left\{\mathcal{V}_{i} \in \mathcal{V}\right\}$.

Thomae (Rauch) formulas ...

Beyond $N=2$ or hyperelliptic case?

Isomonodromic tau-function

Isomonodromy/CFT correspondense

with fixed monodromies γ :

$$
\begin{equation*}
M_{\gamma} \sim \operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{N}\right) \sim \operatorname{diag}\left(e^{2 \pi i \theta_{1}}, \ldots, e^{2 \pi i \theta_{N}}\right) \tag{14}
\end{equation*}
$$

Isomonodromy/CFT correspondense

$$
\begin{gather*}
\tau_{I M}(q)=\sum_{\boldsymbol{n} \in \Gamma\left(\mathfrak{s l}_{N}\right)} \exp (\boldsymbol{b}, \boldsymbol{n}) . \\
\cdot C_{\boldsymbol{n}}^{(0 q)}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{q}, \boldsymbol{a}, \mu_{0 q}, \nu_{0 q}\right) C_{\boldsymbol{n}}^{(1 \infty)}\left(\boldsymbol{\theta}_{1}, \boldsymbol{\theta}_{\infty}, \boldsymbol{a}, \mu_{1 \infty}, \nu_{1 \infty}\right) \cdot \tag{15}\\
\cdot q^{\frac{1}{2}(\boldsymbol{a}+\boldsymbol{n}, \boldsymbol{a}+\boldsymbol{n})-\frac{1}{2}\left(\boldsymbol{\theta}_{0}, \boldsymbol{\theta}_{0}\right)-\frac{1}{2}\left(\boldsymbol{\theta}_{q}, \boldsymbol{\theta}_{q}\right)} \\
\cdot \mathcal{B}_{\boldsymbol{n}}\left(\left\{\boldsymbol{\theta}_{f}\right\}, \boldsymbol{a}, \mu_{0 q}, \nu_{0 q}, \mu_{1 \infty}, \nu_{1 \infty} ; q\right)
\end{gather*}
$$

(GIL 2012, P.Gavrylenko 2015).
$\{\boldsymbol{a}, \boldsymbol{b} ; \boldsymbol{\mu}, \boldsymbol{\nu}\}$ - parameters on moduli space of $\mathfrak{s l}_{N}$ flat connections (symplectic manifold), already for 3-points its dimension $\operatorname{dim}=(N-1)(N-2)$.

Topological vertex: 5d deformation ... ???

Generic monodromy operators for W -algebras: fermionic construction

$$
\begin{equation*}
\mathcal{K}_{\alpha \beta}(z, w)=\frac{\left[\phi(z) \phi(w)^{-1}\right]_{\alpha \beta}}{z-w} \tag{16}
\end{equation*}
$$

given in terms of the solution to the linear system

$$
\begin{equation*}
\frac{d}{d z} \phi(z)=\phi(z)\left(\frac{A_{0}}{z}+\frac{A_{1}}{z-1}\right)=\phi(z) A(z) \tag{17}
\end{equation*}
$$

with $A_{0} \sim \boldsymbol{\sigma}, A_{1} \sim \boldsymbol{\nu}, A_{\infty} \sim \boldsymbol{\theta}$ but $\left[A_{i}, A_{j}\right] \neq 0$.
A quasi-group element
in terms of the kernels (e.g. for $|z| \geq 1,|w| \leq 1$)

$$
\begin{equation*}
\langle\boldsymbol{\theta}| \tilde{\psi}_{\alpha}^{\boldsymbol{\theta}}(z) V_{\nu}(1) \psi_{\beta}^{\boldsymbol{\sigma}}(w)|\boldsymbol{\sigma}\rangle=\mathcal{K}_{\alpha \beta}(z, w) \tag{19}
\end{equation*}
$$

and further application of the Wick theorem!

Quasipermutation or twist field for an arbitrary N-sheet cover \mathcal{C} :

with the free-field currents

$$
\begin{equation*}
J_{i}(z) J_{j}\left(z^{\prime}\right)=\frac{\delta_{i j}-\frac{1}{N}}{\left(z-z^{\prime}\right)^{2}}+\ldots \tag{20}
\end{equation*}
$$

W-algebra generators as symmetric polynomials ($c=N-1$), e.g.

$$
\begin{gather*}
T(z)=W_{2}(z)=\frac{1}{2} \sum_{i}: J_{i}(z)^{2}: \tag{21}\\
W(z)=W_{3}(z)=\sum_{i<j<k}: J_{i}(z) J_{j}(z) J_{k}(z):
\end{gather*}
$$

Quasipermutation or twist fields

$$
\begin{equation*}
\gamma_{q}: J(z) \mathcal{O}_{s}(q) \mapsto s(J(z)) \mathcal{O}_{s}(q) \tag{22}
\end{equation*}
$$

parameterized by $s \in \mathrm{~W}\left(s l_{N}\right)=S_{N}$, with the OPE

$$
\begin{equation*}
\mathcal{O}_{s}\left(z^{\prime}\right) \mathcal{O}_{s^{-1}}(z)=\sum_{\boldsymbol{\theta}} C_{s, \boldsymbol{\theta}}\left(z^{\prime}-z\right)^{\Delta(\boldsymbol{\theta})-2 \Delta(s)}\left(V_{\boldsymbol{\theta}}(z)+\ldots\right) \tag{23}
\end{equation*}
$$

with $V_{\boldsymbol{\theta}}(z)=e^{i(\boldsymbol{\theta}, \phi(z))}$ being primaries of the current algebra.

The (quasi-)permutation or twist fields \mathcal{O} are

- Primary fields of the W-algebra (and not of the current algebra!) - non degenerate in terms of W-representation theory;
- Their quantum numbers $\mathcal{O}_{s, \mathbf{r}}(z) \mapsto|s, \mathbf{r}\rangle$ are symmetric functions of the Weyl vector (for each cycle in $s=\left[l_{1}, \ldots, l_{k}\right]$), e.g. $\Delta \sim \operatorname{Tr}\left(\log M_{\gamma}\right)^{2}$ or

$$
\begin{equation*}
\Delta=\frac{1}{2} \sum\left(\frac{\log \lambda_{i, v_{i}}}{2 \pi i}\right)^{2}=\sum_{i=1}^{k} \frac{l_{i}^{2}-1}{24 l_{i}}+\sum_{i=1}^{k} \frac{1}{2} l_{i} r_{i}^{2} \tag{24}
\end{equation*}
$$

Formulas for the characters (logarithm up to $\sum n_{k}=0$)

$$
\begin{equation*}
\Delta_{\mathbf{n}}=\frac{1}{2} \sum_{k}\left(\theta_{k}+n_{k}\right)^{2}=\frac{N^{2}-1}{24 N}+\frac{1}{2} \mathbf{n}^{2}+\frac{1}{N} \rho \cdot \mathbf{n} \tag{25}
\end{equation*}
$$

so that

$$
\begin{align*}
\operatorname{ch}_{N}(q) & =q^{\frac{N^{2}-1}{24 N}} \frac{\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{N}}{\prod_{k=1}^{\infty}\left(1-q^{k / N}\right)}=q^{\frac{N^{2}-1}{24 N}} \frac{\prod_{k=1}^{\infty}\left(1-q^{k}\right)^{N-1}}{\prod_{a=1}^{1} \prod_{k=1}^{\infty}\left(1-q^{k+a / N}\right)}= \\
& =\sum_{\alpha \in \Gamma\left(\mathfrak{s l}_{N}\right)} q^{\frac{1}{2}\left(\alpha+\frac{\rho}{N}, \alpha+\frac{\rho}{N}\right)}=q^{\frac{N^{2}-1}{24 N}} \Theta_{N}(\tau \rho / 2 N \mid q) \tag{26}
\end{align*}
$$

coincide with representation theory of $\widehat{g l(N)_{1}}$ (Lepowsky-Wilson representations).

Similarly, e.g. for $\mathfrak{g}=\mathfrak{s o}_{2 r+1}$

$$
\begin{align*}
& \frac{\prod_{k \geq 0}\left(1+q^{k+\frac{1}{2}}\right)}{\prod_{n>0}\left(1-q^{n}\right)^{r}} \sum_{\alpha \in \Gamma\left(\mathfrak{s o}_{2 r+1}\right)} q^{\frac{1}{2}(\alpha, \alpha)+\frac{1}{2 r}\left(\rho^{\vee}, \alpha\right)}= \tag{27}\\
& \quad=2 \prod_{n>0}\left(1+q^{n}\right) \prod_{a=1}^{r} \frac{1}{\prod_{k \geq 0}\left(1-q^{k+\frac{2 a-1}{2 r}}\right)}
\end{align*}
$$

The l.h.s. has an obvious sense of the trace

$$
\begin{align*}
& \operatorname{Tr}_{\mathcal{F}_{\psi}^{\otimes(2 r+1)}} q^{L_{0}+\frac{1}{2 r}\left(\rho^{\vee}, h\right)}=\operatorname{Tr}_{\mathcal{V}_{0} \oplus \mathcal{V}_{1}} q^{L_{0}+\frac{1}{2 r}\left(\rho^{\vee}, h\right)}= \tag{28}\\
& \quad=2 \operatorname{Tr}_{\mathcal{V}_{0}} q^{L_{0}+\frac{1}{2 r}\left(\rho^{\vee}, h\right)}=2 \operatorname{Tr}_{\mathcal{V}_{1}} q^{L_{0}+\frac{1}{2 r}\left(\rho^{\vee}, h\right)}
\end{align*}
$$

A generic product formula for the lattice theta-functions (?)

$$
\begin{equation*}
\Theta_{\mathfrak{g}}\left(\tau \rho^{\vee} / h \mid q\right) \sim \sum_{\alpha \in \Gamma(\mathfrak{g})} q^{\frac{1}{2}(\alpha, \alpha)+\frac{1}{h}\left(\rho^{\vee}, \alpha\right)} \tag{29}
\end{equation*}
$$

To compute the conformal block of quasimonodromy fields

$$
\begin{equation*}
\mathcal{G}(q)=\left\langle\mathcal{O}_{s_{1}}\left(q_{1}\right) \mathcal{O}_{s_{1}^{-1}}\left(q_{2}\right) \ldots \mathcal{O}_{s_{L}}\left(q_{2 L-1}\right) \mathcal{O}_{s_{L}^{-1}}\left(q_{2 L}\right)\right\rangle \tag{30}
\end{equation*}
$$

consider the correlation functions

$$
\begin{gather*}
\mathcal{G}(q)=\langle\langle 1\rangle\rangle_{q}, \quad \mathcal{G}_{1}^{i}(z \mid q)=\left\langle\left\langle J_{i}(z)\right\rangle\right\rangle_{q} \\
\mathcal{G}_{2}^{i j}\left(z, z^{\prime} \mid q\right)= \tag{31}\\
\text { etc }
\end{gather*}
$$

so that $\mathcal{G}_{1}^{i}(z \mid q) d z=\mathcal{G}_{1}\left(\pi^{-1}(z)^{i} \mid q\right) d \pi^{-1}(z)^{i}$ at the i-th preimage on \mathcal{C} etc, which are restored from the analytic properties.
E.g.

$$
\begin{equation*}
\frac{\mathcal{G}_{1}(\xi \mid q) d \xi}{\mathcal{G}(q)}=\sum_{I=1}^{g} a_{I} d \omega_{I}+\sum_{\alpha=1}^{2 L} d \Omega_{\mathbf{r}^{\alpha}}=d S \tag{32}
\end{equation*}
$$

1-form on the cover, decomposed over the basis of Abelian differentials.

- Holomorphic part

$$
\begin{equation*}
a_{I}=\oint_{A_{I}} d S=\oint_{A_{I}} \frac{d \xi \mathcal{G}_{1}(\xi \mid q)}{\mathcal{G}(q)}, \quad I=1, \ldots, g \tag{33}
\end{equation*}
$$

is fixed by intermediate channel's charges, the number comes from RH formula

$$
\begin{equation*}
g=\sum_{j=1}^{L} \sum_{\alpha=1}^{k_{\alpha}}\left(l_{i}-1\right)-N+1 \tag{34}
\end{equation*}
$$

- Meromorphic part

$$
\begin{equation*}
d \Omega_{\mathbf{r}^{\alpha}} \underset{p_{\alpha, i}}{\sim} r_{i}^{\alpha} \frac{d \xi_{\alpha, i}}{\xi_{\alpha, i}}, \quad \pi\left(p_{\alpha, i}\right)=q_{\alpha}, \quad \oint_{\mathbf{A}} d \Omega_{\mathbf{r}^{\alpha}}=0 \tag{35}
\end{equation*}
$$

is fixed by $U(1)^{\sum k_{\alpha}-1}$ charges for reducible permutations

$$
\sum_{i} r_{i}^{\alpha}=0, \quad \alpha=1, \ldots, 2 L
$$

Similarly

$$
\begin{equation*}
\frac{\mathcal{G}_{2}\left(p^{\prime}, p\right)}{\mathcal{G}} d \xi_{p^{\prime}} d \xi_{p}=d S\left(p^{\prime}\right) d S(p)+K\left(p^{\prime}, p\right)-\frac{1}{N} K_{0}\left(p^{\prime}, p\right) \tag{36}
\end{equation*}
$$

in terms of

$$
\begin{gather*}
K\left(p^{\prime}, p\right)=d_{\xi_{p^{\prime}}} d_{\xi_{p}} \log E\left(p^{\prime}, p\right)=\frac{d \xi_{p^{\prime}} d \xi_{p}}{\left(\xi_{p^{\prime}}-\xi_{p}\right)^{2}}+2 t_{\xi}(p) d \xi_{p}^{2}+\ldots \\
\oint_{A_{I}} K\left(p^{\prime}, p\right)=0 \tag{37}
\end{gather*}
$$

which leads to

$$
\begin{gather*}
\left\langle T(z) \mathcal{O}_{s_{1}}\left(q_{1}\right) \mathcal{O}_{s_{1}^{-1}}\left(q_{2}\right) \ldots \mathcal{O}_{s_{L}}\left(q_{2 L-1}\right) \mathcal{O}_{s_{L}^{-1}}\left(q_{2 L}\right)\right\rangle \\
\left\langle\mathcal{O}_{s_{1}}\left(q_{1}\right) \mathcal{O}_{s_{1}^{-1}}\left(q_{2}\right) \ldots \mathcal{O}_{s_{L}}\left(q_{2 L-1}\right) \mathcal{O}_{s_{L}^{-1}}\left(q_{2 L}\right)\right\rangle \tag{38}\\
=\sum_{\pi(p)=z}\left(t_{z}(p)+\frac{1}{2}\left(\frac{d S(p)}{d z}\right)^{2}\right)
\end{gather*}
$$

In local co-ordinate $\xi=z^{1 / l}$

$$
\begin{equation*}
t_{z}(p)=t_{\xi}(p)\left(\frac{d \xi}{d z}\right)^{2}+\frac{1}{12}\{\xi, z\}=t_{\xi}(p) z^{2 / l-2}+\frac{l^{2}-1}{24 l^{2}} \frac{1}{z^{2}} \tag{39}
\end{equation*}
$$

it gives the dimensions $\sum_{i=1}^{k} \frac{l_{i}^{2}-1}{24 l_{i}}+\sum_{i=1}^{k} l_{i} \frac{r_{i}^{2}}{2}$.
The coefficients at the first-order poles give

$$
\begin{gather*}
\partial_{q_{\alpha}} \log \mathcal{G}\left(q_{1}, \ldots, q_{2 L}\right)=\sum_{\pi\left(p_{\alpha, i}\right)=q_{\alpha}} \operatorname{res}_{p_{\alpha, i}} t_{z} d z+ \\
+\frac{1}{2} \sum_{\pi\left(p_{\alpha, i}\right)=q_{\alpha}} \operatorname{res}_{p_{\alpha, i}} \frac{(d S)^{2}}{d z} \tag{40}
\end{gather*}
$$

where the last term is a formula from extended SW theory.

Result:

$$
\begin{equation*}
\mathcal{G}(q)=\langle\langle 1\rangle\rangle_{q}=\tau_{S W}(a, q) \cdot \tau_{B}(q) \tag{41}
\end{equation*}
$$

where

$$
\begin{equation*}
\partial_{q_{\alpha}} \log \tau_{S W}(a ; q)=\frac{1}{2} \sum_{\pi\left(p_{\alpha, i}\right)=q_{\alpha}} \operatorname{res}_{p_{\alpha, i}} \frac{(d S)^{2}}{d z} \tag{42}
\end{equation*}
$$

and

$$
\begin{equation*}
\partial_{q_{\alpha}} \log \tau_{B}(q)=\sum_{\pi\left(p_{\alpha, i}\right)=q_{\alpha}} \operatorname{res}_{p_{\alpha, i}} t_{z} d z \tag{43}
\end{equation*}
$$

together with the SW equations

$$
\begin{equation*}
\partial_{a_{I}} \log \tau_{S W}=\oint_{B_{I}} d S=\sum_{J} \mathcal{T}_{I J} a_{J}+\Omega_{I} \tag{44}
\end{equation*}
$$

where:

- $\mathcal{T}_{I J}=\oint_{B_{I}} d \omega_{J}$ is the period matrix of the cover in fixed the basis in homologies $H_{1}(\Sigma)$,

$$
\begin{equation*}
\frac{\partial \mathcal{T}_{I J}}{\partial q_{\alpha}}=\sum_{\pi\left(p_{\alpha}^{i}\right)=q_{\alpha}} \operatorname{Res}_{p_{\alpha}^{i}} \frac{d \omega_{I} d \omega_{J}}{d z} \tag{45}
\end{equation*}
$$

- The linear pieces (here $A(p)$ is the Abel map):

$$
\begin{equation*}
\Omega_{J}=\sum_{\alpha} \oint_{B_{J}} d \Omega_{\mathbf{r}^{\alpha}}=\sum_{\alpha, j} r_{j}^{\alpha} A_{J}\left(p_{\alpha, j}\right), \quad J=1, \ldots, g \tag{46}
\end{equation*}
$$

Consistency is proven by RBI.

The SW part can be computed

$$
\begin{equation*}
\log \tau_{S W}=\frac{1}{2} \sum_{I J} a_{i} \mathcal{T}_{I J} a_{J}+\sum_{I} \Omega_{I} a_{I}+Q(\mathbf{r}) \tag{47}
\end{equation*}
$$

where the quadratic form

$$
\begin{gather*}
Q(\mathbf{r})=\sum_{p_{\alpha}^{i} \neq p_{\beta}^{j}} r_{\alpha}^{i} r_{\beta}^{j} \log \Theta_{*}\left(A\left(p_{\alpha}^{i}\right)-A\left(p_{\beta}^{j}\right)\right)- \\
\quad-\left.\sum_{p_{\alpha}^{i}}\left(r_{\alpha}^{i}\right)^{2} l_{\alpha}^{i} \log \frac{d\left(z(p)-q_{\alpha}\right)^{1 / l_{\alpha}^{i}}}{h_{*}^{2}(p)}\right|_{p=p_{\alpha}^{i}} \tag{48}
\end{gather*}
$$

Summing up these conformal blocks

$$
\begin{gather*}
\tau_{I M}(q \mid \mathbf{a}, \mathbf{b})=\sum_{\mathbf{n} \in \mathbb{Z}^{g}} \mathcal{G}(q \mid \mathbf{a}+\mathbf{n}) e^{2 \pi i(\mathbf{n}, \mathbf{b})}= \\
=\tau_{B}(\boldsymbol{q}) \exp \left(\frac{1}{2} Q(\mathbf{r})\right) \Theta\left[\begin{array}{l}
\mathbf{a} \\
\mathbf{b}
\end{array}\right] \tag{49}
\end{gather*}
$$

one gets the exact isomonodromic tau-function. The most nontrivial step here is

$$
\begin{equation*}
\mathcal{G}(q, \bullet)=q^{\#} C C \mathcal{B}(q, \bullet) \tag{50}
\end{equation*}
$$

where $\mathcal{B}(q, \bullet)=1+O(q)$ corresponds to original BPZ normalization, and

$$
\begin{equation*}
C C \approx 4^{-\sum a_{I}^{2}-\left(\sum a_{I}\right)^{2}} \tag{51}
\end{equation*}
$$

comes from degenerate period matrix (in hyperelliptic example, and can be extended).

