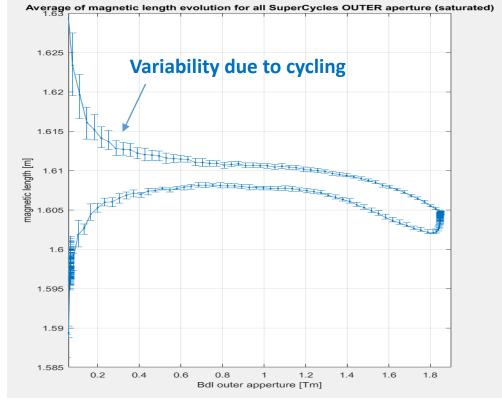
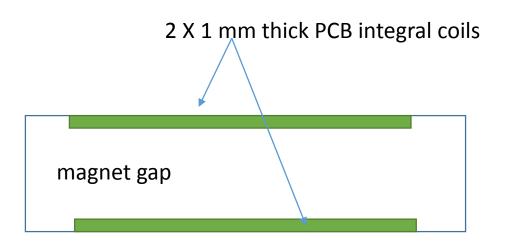

Field Control of TL Switching Dipole


Expected issues:

- history-dependence (~10⁻³ at low field)
- Compounded by asymmetric field profile \rightarrow complex hysteresis and eddy currents patterns
- More difficult to measure and simulate

Main dipole unit test supercycle (different combinations of energy levels in succession)

Possible control strategies


Feed-forward current control: test on the bench, then apply a ΔI taken in real-time from a table:

- 1) $\Delta I = f(E_{current cycle}, E_{last cycle})$ (4 combinations)
- 2) $\Delta I = f(E_{current cycle}, E_{last cycle}, E_{second-to.last cycle})$ (16 combinations)

Possible problems: complex, new energy levels require re-measurement

Field feedback control

- 1) Hall probe \rightarrow FGC3 controller (as in HIE ISOLDE bendings): at best few 10⁻⁴, must be tested
- 2) NMR teslameter \rightarrow Java application (as in ISOLDE HRS): too slow
- NMR teslameter → FGC3 controller: planned, but does not exist yet
- 4) Full fledged B-train → FGC3 controller: safest solution, subset of the ring system, requires new PCB coils + one field marker

