Parallelism 1n
Modern C++

Task-based parallelism as the basis for all higher-level APIs

Hartmut Kaiser (hkaiser@cct.lsu.edu)

5/18/2016

HPX

A General Purpose Parallel Runtime System for Applications of any Scale

=
=
=]
=
o
T
=
o'
E
<+
=
—
5‘:
=
N
+
+
(@)
a
~
5}
S
o
=1
a
o=
=
(o]
n
o=
r—
[}
r—
r—{
=~
Ay

5/18/2016

HPX — A General Purpose Runtime
System

- General purpose parallel runtime system for applications of any scale

- Exposes a coherent and uniform, standards-oriented API for ease of
programming parallel, distributed, and heterogeneous applications.

- Enables to write fully asynchronous code using hundreds of millions of threads.
* Provides unified syntax and semantics for local and remote operations.

- HPX represents an innovative mixture of
- A global system-wide address space (AGAS - Active Global Address Space)
* Fine grain parallelism and lightweight synchronization
* Combined with implicit, work queue based, message driven computation
+ Full semantic equivalence of local and remote execution, and
- Explicit support for hardware accelerators (through percolation)

+~
=
(]
g
=
~
<
~
=
)
+
(ay]
]
—
&)
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
(o
=)
w0
o
—
)
—
—
<
~
<
A

@ STE||AR GROUP

5/18/2016

HPX — A General Purpose Runtime
System

- Enables writing applications which out-perform and out-scale existing
applications based on OpenMP/MPI

« http://stellar-group.org/libraries/hpx
- https://github.com/STEIAR-GROUP/hpx/

- Is published under Boost license and has an open, active, and thriving
developer community.

- Can be used as a platform for research and experimentation

+
=
(]
g
=
~
<
~
=
D)
+
(ay]
]
—
&)
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o
(o
=)
wn
o
—
)
—
—
<
~
<
A

@ STE||AR GROUP

http://stellar-group.org/libraries/hpx
https://github.com/STEllAR-GROUP/hpx/

5/18/2016

HPX — A General Purpose Runtime System

C++1y Parallelism APIs

Local Control Objects
(LCOs)

Performance Counter -
Framework

Parcel Transport Layer

Threading Subsystem

e

0))
(@b)]
o
()
:
@)
o
~
()]
-
o
an
=
=
>
()
'o_p—:
(@)
A

Active Global Address
Space (AGAS)

+
=
S
-
~
<
~
=
o
+
<
]
—
<
>
+
+
<
=]
~
)
=
=
=
]
o
(o
=)
wn
]
—
)
—
—
<
~
<
ol

@ STE||AR GROUP

HPX — The API

- As close as possible to C++1y standard library, where appropriate, for instance

 std::thread

-+ stdimutex

- std::future

* std::async

+ std:‘bind

- std::function

- std:tuple

- std::any

 std::cout

- std::parallel::for_each, etc.
- std::parallel::task_block
 std:vector

th:I
th:I
th:I
th:Z
th:I
hpx::
th:I
hpx::
hpx::
hpx::
hpx::
hpx::

thread

mutex

future (including N4107, ‘Concurrency TS’)
async (including N3632)

bind

function

tuple

any (P0220, ‘Library Fundamentals TS’
cout

parallel::for_each (N4105, ‘Parallelism TS’
parallel::task_block (N4411)
partitioned_vector

- Extensions to the standard APIs, where necessary

* While maintaining full compatibility

@ STE||AR GROUP

5/18/2016

=
=)
(]
g
=
~
<
~
=
)
+
(ay]
]
—
&)
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
(o
=)
w0
o
—
)
—
—
<
~
<
A

5/18/2016

Parallelism 1n C++

A Vision for Coherent Higher-level APIs without the need for
OpenMP, OpenAcc, or CUDA, etc.

)
=
=]

)
&~

T

3

o'

E

<+

4

—

@

=

S

+

+

(@)
a
~
5}

S
o

=1
a

o=
-
(o]
n

]

r—
[}

r—

r—{
=~

Ay

5/18/2016

Concepts and Types of Parallelism

Application

Parallel :

Restrictions —__

Futures, Async, Dataflow

Concepts : . . - ..
P Execution Policies _—~ (Grainsize

Where —_——
ﬁxecu‘cors Executor
- —H | Parameters...

Sequence,

+
=
g

R
~
<

s

~

Z

~

=

o

55
oy

M

—
<

=

+
+

)
=
o

=
o

=
]

o
g
wn

e
[}

=]
=
~
<

Ay

@ STE||AR GROUP

5/18/2016

Types of Parallelism

- Current state of standard C++:
- Parallelism TS: iterative parallelism (moved to be included into C++17)
* Concurrency TS: task-based, asynchronous, and continuation style parallelism
- N4411: task blocks for fork-join parallelism of heterogeneous tasks
+ N4406, PROOO8SRO: executors
- PRO057RO0: resumable functions (await, etc.)

- Missing:
 Integration of the above
+ Parallel ranges
* Vectorization is being discussed
- Extensions for GPUs, many-core, distributed, and high-performance computing

- The goal has to be to make parallelism in C++ independent of any external
solutions such as OpenMP, OpenACC, etc.

- HPX makes C++ independent of MPI as well

=
=)
(]
g
=
~
<
~
=
)
+
(ay]
]
—
&)
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
(o
=)
w0
o
—
)
—
—
<
~
<
A

@ STE||AR GROUP

Ne)
—
©)
N
=~
Q0
—i
=
e

What is a (the) future

- A future 1s an object representing a result which has not been calculated yet

Locality 1 é

_ = Enables transparent synchronization =

Future object Locality 2 with producer Z
=

Suspend S - = Execute S
Consumcr Future: = Hides notion of dealing with threads 5
thread (N -— <
Vi . » Makes asynchrony manageable -

Execute / L L.- thread i
another = Allows for composition of several £

- Result is being asynchronous operations S
esume returned =
B » (Turns concurrency into parallelism) £
e

@ STE||AR GROUP

5/18/2016

What is a (the) Future?

- Many ways to get hold of a future, simplest way is to use (std) async:

int universal answer() { return 42; }

void deep_ thought()

{
future<int> promised answer = async(&universal answer);
// do other things for 7.5 million years
cout << promised answer.get() << endl; // prints 42

}

+
=
S
e
~
<
~
=
o
+
<
]
—
<
>
+
+
<
=]
~
)
=
=
=
]
o
(o
=)
wn
]
—
)
—
—
[ay)
~
[a)
ol

@ STE||AR GROUP

J9STR
910¢/81/9 2

muwreq (NIHD 18 q[8L) ++) WISPOJA Ul WST[a[[Ble]

().
&
=
)
o p=i
=
o
<
]
D
—
v
=
v
a¥

Parallel Algorithms

adjacent difference adjacent find all of any of

Copy copy if copy n count

count if equal exclusive scan fill ©
fill n find find end find first of g
find if find if not for each for each n E
generate generate n includes inclusgive =Scan =<
inner product inplace merge iz _heap iz _heap until é
iz partitioned iz sorted iz sorted until lexicographical compare 5
max element merge min element minmax element é
mismatch move none of nth element E
partial sort partial sort copy partition partition copy +
reduce remove remove_ copy remove copy if 6
remove if replace replace copy replace copy if %
replace if reverse reverse copy rotate 3
rotate_copy zearch search n set_difference E
Zet _intersection get symmetric difference set union sort %
stable partition stable sort swap ranges tranzform E
uninitialized copy uninitialized copy n uninitialized fill uninitialized fill n E
unigue unigue copy &

@ STE||AR GROUP

Parallel Algorithms

- Similar to standard library facilities known for years
« Add execution policy as first argument

- Execution policies have associated default executor and default executor
parameters
« par > parallel executor, static chunk size
* seq 2 sequential executor, no chunking

- Rebind executor and executor parameters:

@ STE||AR GROUP

Parallel Algorithms

- Similar to standard library facilities known for years
« Add execution policy as first argument

- Execution policies have associated default executor and default executor
parameters
« par > parallel executor, static chunk size
* seq 2 sequential executor, no chunking

- Rebind executor and executor parameters:

@ STE||AR GROUP

Rebind Execution Policies

@ STE||AR GROUP

Parallel Algorithms

@ STE||AR GROUP

5/18/2016

Execution Policies (HPX Extensions)

- Extensions: asynchronous execution policies

- parallel task _execution policy (asynchronous version of
parallel execution_policy), generated with par(task)

- sequential task_execution_policy (asynchronous version of
sequential execution pollcy) generated with seq(task)

* In all cases the formerly synchronous functions return a future<>
- Instruct the parallel construct to be executed asynchronously
- Allows integration with asynchronous control flow

+~
=
(]
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

@ STE||AR GROUP

5/18/2016

Executors

- Executors must implement one function: async_execute(F && f)

- Invocation of executors happens through executor_traits which
exposes (emulates) additional functionality:

executor traits<my_executor_ type>::execute(
my_ executor,
[](size_t i){ // perform task i },

n;

- Four modes of invocation: single async, single sync, bulk async and
bulk sync

« The async calls return a future

=
=)
(]
g
=
~
<
~
=
)
+
(ay]
]
—
&)
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
(o
=)
w0
o
—
)
—
—
<
~
<
A

@ STE||AR GROUP

5/18/2016

Executors (HPX)

- We added fire & forget functionality to executor_traits:

void apply_execute(executor_type& exec, F && f);

- We also added timed executor traits, this exposes all of the above
as ..._at and ..._after modifications, for instance:

void apply execute_at(executor_type& exec,
std::chrono::time_point<C, D> const& abs time, F && f);

void apply execute_after(executor_type& exec,
std::chrono::time_duration<R, P> const& abs time, F && f);

=
=
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

@ STE||AR GROUP

5/18/2016

Executor Examples

- sequential executor, parallel executor:
« Default executors corresponding to par, seq

this thread executor

thread pool executor
- Specify core(s) to run on (NUMA aware)

distribution policy executor
- Use one of HPX’s (distributed) distribution policies, specify node(s) to run on

cuda: :default executor
 Use for running things on GPU

- Ktc.

=
=
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

@ STE||AR GROUP

5/18/2016

Executor Parameters

- Same scheme as for executor/executor_traits:
* parameter/executor_parameter_traits

- Various execution parameters, possibly executor specific

- For instance:

+ Allow to control the grain size of work
 1.e. amount of iterations of a parallel for_each run on the same thread
« Similar to OpenMP scheduling policies: static, guided, dynamic

* auto_chunk size, static chunk _size, dynamic_chunk size

* Much more fine control
- Used by parallel algorithms to adjust chunk size

« Specify GPU-kernel name for certain platforms
* gpu_kernel<foobar>

+ Specify which other arrays to prefetch

=
=
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

@ STE||AR GROUP

J9STR
910¢/81/9 2

muwreq (NIHD 18 q[8L) ++) WISPOJA Ul WST[a[[Ble]

<+
-
D
S
D
Q
v
—
Q
S
<+
!
-

5/18/2016

Data Placement

- Different strategies for different platforms
* Need interface to control explicit placement of data
- NUMA architectures
- GPUs
+ Distributed systems
- Use std::allocator<T> interfaces
« NUMA architectures: first touch

+ Slightly extended: bulk-operations for allocation, construction, destruction, and
deallocation

+
=
(]
g
=
~
E
=
D)
+
(o]
]
—
o]
&=
~—
+
+
<
=]
~
)
=]
o
=
1
]
o
P
=)
wn
]
—
)
—
—
~
ol

@ STE||AR GROUP

5/18/2016

Data Placement

- HPX:
* hpx::vector<T>
« Same interface as std: :vector<T>
- Manages data locality through allocator
- Uses execution target objects for data placement
+ Allows for direct manipulation of data on NUMA domains, GPUs, remote nodes, etc.

* hpx::partitioned_vector<T>
* Same interface as std: :vector<T>

* Segmented data store
+ Segments can be hpx: :vector<T>

* Uses distribution_policy for data placement

+ Allows for manipulation of data on several targets

=
=
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

@ STE||AR GROUP

5/18/2016

Data Placement

- Extending std::allocator_traits

- Adding functionality to copy data
- CPU: trivial
« GPU: platform specific data transfer, hooked into parallel: :copy
- Distributed: maps onto network, possibly RDMA (put/get)

- Adding functionality to access single elements
« CPU: trivial
« GPU: slow, but possible
+ Distributed: maps onto network

=
=
g
=
B
E
=
O
-+
-
r—
H
N
L
+
<
=]
~
<)
o)
o
-
=
(@)
.-
=
e}
19)]
o=
—
]
r—
r—
~
ol

@ STE||AR GROUP

5/18/2016

Execution Targets

One Ring to Rule them All

)
=
=]

)
&~

T

3

o'

E

<+

4

—

@

=

S

+

+

(@)
a
~
5}

S
o

=1
a

o=
-
(o]
n

]

r—
[}

r—

r—{
=~
<

Ay

5/18/2016

Execution Targets

- Opaque types which represent a place in the system
+ Used to identify data placement
- Used to specify execution site close to data

- Targets encapsulate architecture specifics
- E.g. cuda: :target, host::target

- Allocators to be initialized from targets
« Customization of data placement
 NUMA domain: host::block _allocator
- (possibly remote) GPU device: cuda: :allocator

- Locality, i.e. (possibly remote) node

=
=
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

- Executors to be initialized from targets as well
- Make sure code 1s executed close to placed data

@ STE||AR GROUP

J9STR
910¢/81/9 2

muwreq (NIHD 18 q[8L) ++) WISPOJA Ul WST[a[[Ble]

n
=
-
n
QD
a=
g,
-
4y
n
D
pr—i
Q
S
v
PY
]

Extending Parallel Algorithms

S

@ STE||AR GROUP

Sean Parent: C++ Seasoning, Going Native 2013

+
=
S
+
~
<
~
=
o
+
<
]
—
<
>
+
+
@)
=]
~
)
=
=
=
(=]
o
g
wn
]
—
)
—
—
[ay)
~
[a)
A

5/18/2016

Extending Parallel Algorithms

- New algorithm: gather

Sean Parent: C++ Seasoning, Going Native 2013

@ STE||AR GROUP

Extending Parallel Algorithms

- New algorithm: gather_async

@ STE||AR GROUP

Extending Parallel Algorithms (await)

- New algorithm: gather_async

@ STE||AR GROUP

5/18/2016

STREAM Benchmark

- Assess memory bandwidth

. Series of parallel for loops, 3 arrays (a, b, c)
* copy step- Cc = a
- scalestep:b = k * ¢
- add two arrays:c = a + b
- triad step:a = b + k * ¢

- Best possible performance possible only if data 1s placed properly
« Data has to be located in memory of NUMA-domain where thread runs

- OpenMP: implicitly by using ‘first touch’, i.e. run initialization and
actual benchmark using same thread
- #pragma omp parallel for schedule(static)

=
=
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

@ STE||AR GROUP

STREAM Benchmark

@ STE||AR GROUP

STREAM Benchmark (CPU)

@ STE||AR GROUP

Ne)
—
=)
2\
~
0
—
~
le)

STREAM Benchmark: HPX vs. OpenMP

TRIAD STREAM Results
(50 million data points)
80 .
= o O E
70 90— —@ @ é
- ~~HPX (1 NUMA Domain) z
= —4—QOpenMP (1 NUMA Domain) S
& 50 -e-HPX (2 NUMA Domains) :
< ~=-OpenMP (2 NUMA Domains) E
+ 40 L
-E —4 —& A S
g 30 ;;j
s
20 =
10 <
1 2 3 4 5 6 7 8 9 10 11 12 5
Number of cores per NUMA Domain

@ STE||AR GROUP

J9STR
910¢/81/9 2

muwreq (NIHD 18 q[8L) ++) WISPOJA Ul WST[a[[Ble]

0),
-
a¥
O

-
+

o0
=
o

-

D
42

P4
]

STREAM Benchmark (GPU)

@ STE||AR GROUP

5/18/2016

STREAM Benchmark: HPX vs. OpenCL

Performance in STREAM benchmark

1000000

100000

e C++AMP/HSA

e HS A

=—4— C++AMP/OpenCL
OpenCL

Bandwidth [MB/s]
-

1000

=
=
g
=
~
&3
=
)
+
]
—
&=
~—
+
+
@)
=]
~
)
=
o
=
1
]
o=
—
=)
w0
o
—
)
—
—
ay]
~
<
A

100
1000

@ STE||AR GROUP

J9STR
910¢/81/9 2

muwreq (NIHD 18 q[8L) ++) WISPOJA Ul WST[a[[Ble]

S
o
3=
D
V
o
D
-
o
o p=nf
e
o p=nf
HE
o
S
al¥

Finding Min/Max on Host

@ STE||AR GROUP

Finding Min/Max on GPU

@ STE||AR GROUP

J9STR
910¢/81/9 2

muwreq (NIHD 18 q[8L) ++) WISPOJA Ul WST[a[[Ble]

oN
-
o p=nf
e
&
P
L
QD
==
al
Q
o
QO
]

Automatic Loop Prefetching

@ STE||AR GROUP

Automatic Loop Prefetching (Results)

TRIAD STREAM Results (1 NUMA Domain)

—&—HPX(With Prefetching) - 100,000 data --®-- HPX(Without Prefetching) - 100,000 data
—eo— HPX(With Prefetching) - 1,000 data --®-- HPX(Without Prefetching) - 1,000 data

2500 iE
-
S
+
am
2000 ~
Z
o't
2
>
f— +
& 1500 v
=) =
= &=
E e
2 +
£ 1000 @)
M =l
~
e
(&)
=
=
500 =i
.-
g
w0
N
=
—
0 =
0 1 2 3 4 5 6 7 8 9 a

Number of Threads

@ STE||AR GROUP

910¢/81/9

muwreq (NIHD 18 q[8L) ++) WISPOJA Ul WST[a[[Ble]

an
an
-
=
)

Ing wi

»
S
Q
=
Q

O

Ne)
—
=)
2\
~
0
—
~
e}

Parallel Algorithms in VTK (TBB/HPX)

VTK-m benchmark timings
Speedup of HPX compared to TBB on 10 core broadwell node

4.50
==Copy =@=Reduce =i=Scan Exclusive
4.00 ===Scan Inclusive ==Sort =0=LowerBound N ‘5
’ ==JpperBound =—=ReduceByKey ===SortByKey E
=¥=StreamCompact ==StreamCompactStencil ~ “*=~Unique ;
3.50 E
Z
o'
2
3.00 (@)
=
o
=
2.50 % L i é:
+
+
2.00 S Qﬁ
o
\ L&\ 2
T a <
3
1.50 =
a
o=
g
1.00 | 2
o
S
=~
<
050 +—+—F"——T—T—"r—"'r—r—r—"r"—TTrrT—T A

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59

0 STE"AR GROUP Credits: John Biddiscombe (CSCS)

Nel
—
=)
N
~
0
—
~
o)

CENTER FOR COMPUTATION
& TECHNOLOGY

Parallelism in Modern C++ (Talk at CERN), Hartmut

N
M@

