Fault Detection using Advanced Analytics at CERN's Large Hadron Collider

Antonio Romero Marín

Manuel Martin Marquez

What's CERN

What's CERN

- European Laboratory for Particle Physics
 - Fundamental Research
- Worldwide International Collaboration
 - US is an important contributor to CERN and the experiments
- Education & Training
- Push Frontiers of Technology

CERN openlab

- Public-private partnership between CERN and leading ICT companies and research institutes
- Accelerate cutting-edge solutions for the worldwide LHC community and wider scientific research.
- Designed to create and disseminate knowledge
 - Publication of reports and articles
 - Workshops or seminars
 - CERN openIab Student Programme

CERN Accelerator Complex

▶ p (proton) ▶ ion ▶ neutrons $▶ \overline{p}$ (antiproton) ▶ electron →+→ proton/antiproton conversion

LHC Large Hadron Collider SPS Super Proton Synchrotron PS Proton Synchrotron

AD Antiproton Decelerator CTF3 Clic Test Facility AWAKE Advanced WAKefield Experiment ISOLDE Isotope Separator OnLine DEvice LEIR Low Energy Ion Ring LINAC LINear ACcelerator n-ToF Neutrons Time Of Flight HiRadMat High-Radiation to Materials

Data Analytics Challenges

- Some faults cannot be avoided
 - Decrease the availability for running physics
- Preventive maintenance is not enough
 - Does not take into account the condition of the equipment
- LHC upgrades will further increase luminosity
 - Computing resources needs will be higher
 - Data generated will increase drastically

Data Analytics Objective

Control and Monitoring Systems

Intelligent, Predictive and Proactive Systems

Areas of investigation

- Predictive maintenance and system optimization
- Data extraction, transformation and loading (ETL)
- Data Visualization and Discovery

R for data analytics

- Language for statistical computing and graphics
- Powerful integrated suite of software facilities
 - Data manipulation
 - Calculation
 - Graphical display, plotting
- Free and Open Source
- Extensible
 - Over 7800 CRAN packages extending base functionality
- Interactive and programmatic environment
- Great user community
 - Active development, frequently updated

Parallel Processing Approaches in R

- Parallel processing with R
 - Foreach
 - Snow
 - Rmpi
 - BatchExperiments package (BatchJobs)
- SparkR
 - Packaged in Spark from 1.4.0
- Oracle R Enterprise (ORE)

Why ORE? - ORE benefits

- A database-centric environment for analytical processes in R
 - Allows to use the database server to run R scripts (scalability & performance)
 - Eliminate memory constraint of client R engine
 - R working on data directly in the database, no data transfer
 - Integration with the SQL language
 - Allows in-database data analysis
 - Provide data parallelism

- Transparency Layer
 - Transparently analyze and use data in Oracle Database through R
 - No need to know SQL

CERN Database activity

CERN Control Systems

Providers

Data

Largest Cryogenics Installation

- 50k I/O, 11k actuators, ~5k control loops
- Control:
 - ~100 PLCs (Siemens, Schneider)
 - ~40 FECs (industrial PCs)
- Supervision: 26 SCADA servers

Instrument/Actuators	Total
Temperature [1.6 – 300 K]	10361
Pressure [0 – 20 bar]	2300
Level	923
Flow	2633
Control valves	3692
On/Off valves	1835
Manual valves	1916
Virtual flow meters	325
Controllers (PID)	4833

Use Case: Anomaly Detection on Beam Screen

- PID output (time series) segmentation
- Characterization + Feature extraction
- Features based classification

Source: EN-ICE (Benjamin Bradu, Enrique Blanco)

Use Case: Anomaly Detection on Beam Screen

USA - 27/01/2016

BIWA 16

Use Case: Faulty Cryogenics Valve Detection

- What is the objective?
 - Predict faulty valves before they actually fail
- How?
 - Valve receive an aperture order value (aperture order)
 - Effective aperture realized by the valve (aperture measured)
 - Analyzing the difference between both (**S** = aperture order aperture measured)

openlab Summer Students Lecture 13: Data Mining, Data Analytics and Big Data

Use Case: Faulty Cryogenics Valve Detection

- Signals used:
 - S = aperture order aperture measured
- Features extractions based on S
 - Variance
 - Percentile 99.9
 - Rope distance R(S)
 - Noise Band B(S)

• Automatic Faulty Valves Detection System

- SVM Support Vector Machine
- The learning set 44 valves
 - aperture order (%)
 - aperture measured (%)

f <- function(dat) {</pre>

#Force the order by read_id (PK on table)
dat<-dat[order(dat\$READ_ID),]</pre>

#Calculate the fatures
s<-dat\$APERTURE_ORDER-dat\$APERTURE_MEASURE</pre>

```
valve = unique(dat$VALVE)
cycle = unique(dat$CYCLE_NUMBER)
status = unique(dat$STATUS)
if (status == 0)
status <- "Normal"
else if (status == 1)
status <- "Faulty"
else status <- "Unknown"</pre>
```

var=var(s)
max=max(s)
min=min(s)

rope_dist=sum(abs(diff(s)))/length(s)
pxx<-welchPSD(s-mean(s),seglength=512,two.sided = TRUE)\$power
bs=(sum(pxx)^2)/(2*512*sum(pxx^2))</pre>

#Return the features

Cryo Valves – Extract Features in ORE

- Valves dataset with 6 features
 - 10.5 M rows
 - 42 M rows
 - 168 M rows

Our experience

- Move the data is very expensive
 - It is faster to process it in the DB with ORE using the appropriate degree of parallelism
- DB nodes already prepared for the workload
 - Memory is a problem for small clients
 - Simplifies the infrastructure
- Write/adapt R code is straight forward
 - Thanks to transparency layer and embedded R execution

Next steps

- Test with DB in-memory features
- Benefit from the hybrid ecosystem
 - Get the best from RDBMS + Hadoop
 - Don't forget about current application layer working with the DB
 - Deploy in streaming
- Predictive Model Markup Language (PMML)
 - Compatible across multiple languages (R, Python, Spark, Java, etc.)

Conclusions

- R ecosystem is very good for Data Analytics
- ORE offers a good solution to get more from your DB deployment
 - No pain adapting code
 - Follows R standards
- Avoid moving data when possible
- Hybrid systems look quite promising to cover multiple scenarios

www.cern.ch