

# Update on Magnet Circuits Configuration

F. Rodriguez Mateos

TCC July 7 2016

### **Outline**

- The main recommendations from the Magnet Circuits Review in March 2016
- The main aspects of the re-baselining in June 2016
- The follow-up given to the main recommendations
- The Magnet Circuits Forum



- The main recommendations from the Magnet Circuits Review in March 2016
- The main aspects of the re-baselining in June 2016
- The follow-up given to the main recommendations
- The Magnet Circuits Forum



# Conceptual Design Review of the Magnet Circuits for the HL-LHC:

- 21-23 March, 2016 -

## **Review Report**

### presented by Akira Yamamoto

on behalf of the Review Panel members

Guram Chlachidze (Fermilab), Arnaud Devred (ITER), Chen-Yu Gung (ITER),
Rudiger Schmidt (CERN), Davide Tommasini (CERN),
Akira Yamamoto (KEK and CERN, Chair), and Markus Zerlaunth (CERN, Sc. Secretary)

Reported at HL-LHC Technical Coordination Committee, 31 March, 2016

## Recommendations per circuit type (1/2)

### 11 T

| Numbe 💌 | System-7 | Recommendation <b>T</b>                                       |
|---------|----------|---------------------------------------------------------------|
| #1      | 11T      | trim-PC versus orbit correctors to be considered              |
| #2      | 11T      | current leads for trim PC to be provided                      |
| #3      | 11T      | quench detection issues (variable threshold, variable delays) |
| #4      | 11T      | improve QH reliability                                        |

## Inner Triplet

| Numbe * | System-7 | Recommendation <b>T</b>                                       |
|---------|----------|---------------------------------------------------------------|
| #5      | IT       | beam dynamics justification before ECR for one single circuit |
| #6      | IT       | comparison different basic quench protection options          |
| #7      | IT       | assessment of long term reliability of CLIQ                   |
| #8      | IT       | inner and inter layer QH R&D                                  |
| #9      | IT       | risk analysis, failure modes                                  |
| #16     | IT       | high-current 2-quadrant PC development                        |
| #17     | IT       | compatibility CLIQ technology with Nb3Sn magnets              |



## Recommendations per circuit type (2/2)

D2

| Numbe 💌 | System-7 | Recommendation                |  |
|---------|----------|-------------------------------|--|
| #10     | D2       | D2 quench protection analysis |  |

## IT correctors

| Numbe 💌 | System - T | Recommendation <b>T</b>                         |
|---------|------------|-------------------------------------------------|
| #11     | IT-C       | energy extraction vs QH                         |
| #12     | IT-C       | HO (>2) lower operational current to below 120A |

## All circuits

| Numbe ~ | System-7 | Recommendation <b>T</b>                                                                |
|---------|----------|----------------------------------------------------------------------------------------|
| #13     | all      | protection of CL connected to circuit                                                  |
| #14     | all      | protection of link connected to circuit                                                |
| #15     | all      | protection of bus bars connected to circuit                                            |
| #20     | all      | reinforce quantitative analysis of dependability at entire protection level            |
| #25     | all      | consideration of the new discharge time constants (characteristic times) for s.c. link |
| #26     | all      | consider high current separators at the level of the current leads                     |



## Recommendations for specific elements/activities

## **EIQA**

| Numbe | System-7 | Recommendation                                                                        |
|-------|----------|---------------------------------------------------------------------------------------|
| #18   | ElQA     | reconsideration of test voltage definitions                                           |
| #19   | ElQA     | assess conditions under which worst case voltages appear and adequate test conditions |

## **HDS**

| Numbe | System-7 | Recommendation <b>T</b>                                   |
|-------|----------|-----------------------------------------------------------|
| #24   | HDS      | reduce triggering time from the present 4 ms down to 1 ms |



## Recommendations on general aspects

## **STRING**

| Numbe | System-T | <b>Recommendation ▼</b>                          |  |
|-------|----------|--------------------------------------------------|--|
| #21   | STR      | test programme to be defined with objectives     |  |
| #22   | STR      | ultimate safety test - complete powering failure |  |

## Plan, Schedule and Documentation

| Numbe 💌 | System-7 | Recommendation <b>T</b>                                       |
|---------|----------|---------------------------------------------------------------|
| #23     | PSD      | resource loaded planning                                      |
| #27     | PSD      | close and regular interaction between involved experts and WP |



## **ECR** after review





EDMS NO. 1682952 VALIDITY

REFERENCE: NOT REQUIRED

## HL – LHC Engineering Change Request CHANGES IN CIRCUIT BASELINE AFTER THE CONCEPTUAL REVIEW HELD IN MARCH 2016

|               | ECR DESCRIPTION                                |                    |                     |  |  |  |  |  |  |  |
|---------------|------------------------------------------------|--------------------|---------------------|--|--|--|--|--|--|--|
| WP Originator | WG Magnet Circuits Coordination                | Process            | -                   |  |  |  |  |  |  |  |
| Equipment     | Circuits Baseline                              | Baseline affected  | Scope, Cost         |  |  |  |  |  |  |  |
| Drawing       | -                                              | Date of Issue      | 2016-04-26          |  |  |  |  |  |  |  |
| Document      | TDR v0                                         | CI responsible     | F. Rodriguez Mateos |  |  |  |  |  |  |  |
| WPs Affected  | WP2, WP3, WP6a, WP6b, WP7, WP11,<br>WP15, WP17 | Reference Document | TDR Version 0.0     |  |  |  |  |  |  |  |

#### **Detailed Description**

The High Luminosity LHC (HL-LHC) Project requires replacing or modifying numerous superconducting magnet circuits in the High Luminosity insertions (Point 1 and Point 5) of the collider. The higher peak fields, higher currents and larger magnetic energies, as well as the necessity to relocate the power converters afar from radiation areas, with the use of superconducting links, make the system more complex and technically very challenging. The role of "Mr. HL-LHC Circuit" was appointed to steer the optimization and ensure consistency of the whole system.

The Conceptual Design Review of the Magnet Circuits for the HL-LHC (https://indico.cern.ch/e/477759) took place from 21st to 23rd March 2016. This ECR contains the changes proposed after the Review for approval by WPLs and PL during TCC.

#### Reasons for change

The proposed simplifications are in line with the recommendations from the Review Panel. See presentations from https://indico.cern.ch/e/477759

#### Impact on Cost. Schedule & Performance

The impact on cost will be evaluated by the Project Budged Officer (add after link to the memo)

#### Impact on other items within the WP

Not applicable.

#### Impact on other WPs

Several WPs are requested to give comments on possible impacts. See presentations https://indico.cern.ch/e/477759

#### Actions to be carried out if ECR is accepted

- Reduction in the number of main inner triplet circuits from 2 to 1 per IP side.
  - This single circuit will have no energy extraction system
  - One, 2-quadrant converter is required per circuit, rated 18 kA
  - A new trim circuit is required on Q3 with a rated current of 2 kA.
- Orbit correctors next to D2 and Q4 will not require quench heaters, the option using energy extraction is being considered and therefore should be kept open.
- 3) Orbit correctors next to Q5 will not require quench heaters.
- New current levels are defined for the the inner triplet's superferric correctors of orders 3, 4, 5, and 6 (normal and skew): the new rated currents are 120 A instead of 200 A previously.
- 5) Time constants for the circuits under fast discharge (also known as characteristic times) are given in annexed table.

Page 1 of 2 Template EDMS No.: 1508429

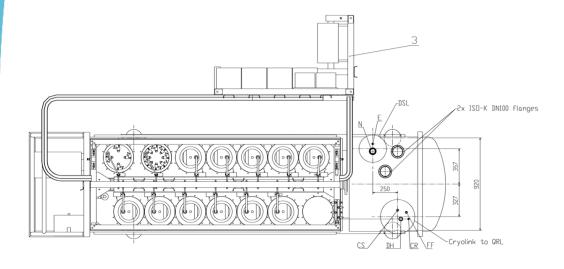
- The main recommendations from the Magnet Circuits Review in March 2016
- The main aspects of the re-baselining in June 2016
- The follow-up given to the main recommendations
- The Magnet Circuits Forum



## Outcome of June 2016 «crises exercise» from Lucio's talk at TCC on June 23 2016

- Staging installation of new MQYY as new Q4 (90 mm aperture) to after HL-LHC end (i.e in LS4), if needed, mantaining present 70 mm MQY, i.e. Q4 modified for 1.9 K operation.
- QPS for the MQXF maintaining all systems (QH<sub>out</sub>, Qh<sub>inn</sub>, (Qh<sub>intr</sub>), and CLIQ) however with a minimal configuration with redundancy.
  - Integration of CLIQ in LHC UL
- Powering the IPQs (Q6-Q5-Q4) from the RR, via existing EPCs, DFBLs (and links?)...




Q6 remains as is in LHC now Q5 will be the present Q4 Q4 will be an MQY @ 1.9 K + 4 correctors/beam

#### DFBL:

- 11 CL 6 kA
- 12 CL 120 A

#### DSL is constituted of:

- 12 cables of 6 kA
- 12 cables of 600 A



Today there are 8 DCF leads to power locally correctors



DFBLE.RR57

## Circuits Table after Review with re-Baseline

|         | Circuits for HiLumi                   | Magnet Type     | Number of circuits<br>per IP side | Number of circuits | I_nominal<br>[kA] | I_ultimate<br>[kA] | I_rated<br>[kA] | L per circuit<br>[mH] | Quench Heaters               | CLIQ     | EE             | characteristic<br>time [s] |
|---------|---------------------------------------|-----------------|-----------------------------------|--------------------|-------------------|--------------------|-----------------|-----------------------|------------------------------|----------|----------------|----------------------------|
|         | Triplet Q1, Q2a, Q2b, Q3              | MQXFA / MQFXB   | 1                                 | 4                  | 16.5              | 17.8               | 18.0            | 255                   | Baseline (inner/outer layer) | Baseline | no             | 0.1-0.5                    |
|         | Trim Q1                               |                 |                                   |                    | 2                 |                    | 2.0             |                       |                              |          |                |                            |
|         | Trim Q3                               |                 |                                   |                    | 2                 |                    | 2.0             |                       |                              |          |                |                            |
|         | Trim Q2a                              |                 |                                   |                    | 0.12              |                    | 2.0             |                       |                              |          |                |                            |
|         | Orbit correctors Q2a/b - vertical     | MCBXFBV         | 2                                 | 8                  | 1.6               | 1.73               | 2.00            | 18                    | Baseline                     | no       | Option         | 0.1-0.5                    |
| et      | Orbit correctors Q2a/b - horizontal   | MCBXFBH         | 2                                 | 8                  | 1.47              | 1.59               | 2.00            | 29                    | Baseline                     | no       | Option         | 0.1-0.5                    |
| Triplet | Orbit correctors CP - vertical        | MCBXFAV         | 1                                 | 4                  | 1.6               | 1.73               | 2.00            | 33                    | Baseline                     | no       | Option         | 0.1-0.5                    |
| Inner ' | Orbit correctors CP - horizontal      | MCBXFAH         | 1                                 | 4                  | 1.47              | 1.59               | 2.00            | 53                    | Baseline                     | no       | Option         | 0.1-0.5                    |
| ≟       | Superferric, order 2                  | MQSXF           | 1                                 | 4                  | 0.182             | 0.20               | 0.20            | 1247                  | no                           | no       | Option         | 7.57                       |
|         | Superferric, order 3, normal and skew | MCSXF / MCSSXF  | 2                                 | 8                  | 0.105             | 0.11               | 0.12            | 186                   | no                           | no       | PC crowbar     | 0.41                       |
|         | Superferric, order 4, normal and skew | MCOXF / MCOSXF  | 2                                 | 8                  | 0.105             | 0.11               | 0.12            | 200                   | no                           | no       | PC crowbar     | 0.41                       |
|         | Superferric, order 5, normal and skew | MCDXF / MCDSXF  | 2                                 | 8                  | 0.105             | 0.11               | 0.12            | 187                   | no                           | no       | PC crowbar     | 0.53                       |
|         | Superferric, order 6                  | MCTXF           | 1                                 | 4                  | 0.105             | 0.11               | 0.12            | 576                   | no                           | no       | PC crowbar     | 0.37                       |
|         | Superferric, order 6, skew            | MCTSXF          | 1                                 | 4                  | 0.105             | 0.11               | 0.12            | 126                   | no                           | no       | PC crowbar     | 0.80                       |
|         |                                       |                 |                                   |                    |                   |                    |                 | -                     |                              |          |                |                            |
| D1      | Separation dipole D1; MBXF            | MBXF            | 1                                 | 4                  | 12                | 13.0               | 13.0 ²          | 25                    | Baseline                     | Option   | no             | 0.1-0.5                    |
|         |                                       |                 |                                   |                    |                   |                    |                 |                       |                              |          |                |                            |
| D2      | Separation dipole D2;MBRD             | MBRD            | 1                                 | 4                  | 12                | 13.0               | 13.0 ²          | 27                    | Baseline                     | Option   | no             | 0.1-0.5                    |
|         | Orbit correctors D2                   | MCBRD           | 4                                 | 16                 | 0.5               | 0.54               | 0.6             | 600                   | no                           | no       | Option         | 10.0                       |
|         |                                       |                 |                                   |                    |                   |                    |                 |                       |                              |          |                |                            |
| φ       | Large aperture 2-in1 Quad; Q4         | MQY             | 2                                 | 8                  | 4.50              | 4.9                | 6.0             | 74.0                  | Baseline                     | no       | no             | 0.1-0.5                    |
| 0       | Orbit correctors Q4                   | MCBY            | 8                                 | 32                 | 0.072             | 0.08               | 0.12            | 5270                  | no                           | no       | no             | 10.0                       |
|         |                                       |                 |                                   |                    |                   |                    |                 |                       |                              |          |                |                            |
| Q51     | Present LHC Q4 magnet                 | MQY             | 2                                 | 8                  | 4.51              | 4.9                | 6.0             | 148.0                 | Baseline                     | no       | no             | 0.1-0.5                    |
| o       | Orbit correctors present Q4           | MCBY            | 6                                 | 24                 | 0.072             | 0.08               | 0.12            | 5270                  | no                           | no       | no             | 0.4                        |
|         |                                       |                 |                                   |                    |                   |                    |                 |                       |                              |          |                |                            |
| $\sim$  | Insertion Quad, 2-in1 aperture; Q6    | MQML            | 2                                 | 8                  | 4.31              | 4.7                | 6.0             | 21.0                  | Baseline                     | no       | no             | 010.5                      |
| J       | Orbit correctors Q6                   | MCBC            | 2                                 | 16                 | 0.08              | 0.09               | 0.12            | 2840                  | no                           | no       | no             | 0.2                        |
|         |                                       | *               |                                   |                    |                   |                    | ×               |                       |                              |          | ×              | *                          |
| 11T     | 11T dipole, MBH                       | 11T dipole, MBH | 1                                 | 2                  | 11.85             | 12.798             | 13              | 127.0                 | Baseline                     | Option   | existing RB EE | as RB                      |
| 1       | Trim circuit                          |                 |                                   |                    | 0                 | 0.034              | -0.3 / 0.1      |                       |                              |          |                |                            |





- The main recommendations from the Magnet Circuits Review in March 2016
- The main aspects of the re-baselining in June 2016
- The follow-up given to the main recommendations
- The Magnet Circuits Forum



## Follow up given to the Review's recommendations

- Further analysis of normal and failure scenarios on QXF circuit, confirmation of the baseline scheme
  - Analysis of CLIQ leads sections
  - Analysis of CLIQ currents
  - Interaction with link as well as implications to bus bars and current leads remain to be discussed (in the agenda for the second meeting of the MCForum)
- Reconsideration of the strategies for high voltage withstand levels
  - Agreement reached with LARP for QXF
- Opening a development line for bipolar energy extraction systems in the 2kA range
  - Heaters vs energy extraction in correctors programmed for first meeting of MCForum
- Development of quench detectors is advancing well
- A detailed model for CLIQ failure analysis has been developed and is giving first results
- Trying to gain as much experience with CLIQ as possible (recent commissioning of two units at FNAL)
- Organization of a Forum to deal with all aspects of circuits related to powering and protection
- And much more ...



### Recent work

- Two complete and recent presentations :
  - CLIQ: space requirements and circuit protection https://indico.cern.ch/event/544204/
    - Re-baselining Meeting, June 17, 2016
  - HL-LHC WP7: Machine Protection and Availability https://indico.cern.ch/event/546270/
    - TE-TM, June 28, 2016
  - HVWL WG efforts gave first agreement for QXF magnets:



| Circuit Element                  | Expected Vmax<br>[V] | V hi-pot | I hi-pot<br>[μΑ] | Minimum time duration [s] |
|----------------------------------|----------------------|----------|------------------|---------------------------|
| Coil to Ground at RT *           | n.a.                 | 3 kV     | 10               | 30                        |
| Coil to Quench Heater at RT *    | n.a.                 | 3 kV     | 10               | 30                        |
| Coil to Ground at cold **        | 520                  | 1.5 kV   | 10               | 30                        |
| Coil to Quench Heater at cold ** | 900                  | 2.3 kV   | 10               | 30                        |



- The main recommendations from the Magnet Circuits Review in March 2016
- The main aspects of the re-baselining in June 2016
- The follow-up given to the main recommendations
- The Magnet Circuits Forum



One of the recommendations of the recent review on HL-LHC Magnet Circuits was:

"... to realize close and regular interaction (communication) between the involved experts and work-packages. This could be possibly done by setting-up of a dedicated working group or by using existing structures to discuss circuit integration and protection on a regular basis and to identify the optimum scheme for each magnet circuit system."



## (Draft) Mandate – to be approved by HL-LHC Project Leader

Within the framework of the HL-LHC Circuits Coordinator (Mr Circuit), the mandate for the new Magnet Circuits Forum (MCF) is as follows:

- The Forum is the meeting where all aspects related to powering and protection are discussed, in particular the ones pertaining to the optimization of circuit layouts and definition of protection means
- Subjects in the agenda are defined in close collaboration with the relevant WPs
- Interface aspects between systems are clarified through meetings at the Forum. To this end, a documentation plan has to be developed and completed. The aim is to prepare a set of functional interface specifications that can be used as input for the design (technical specifications) of the different systems
- Assessment on realistic failure scenarios and required mitigation strategies on a global basis is part of the activities of the Forum
- The Forum is the meeting where aspects related to high voltage withstand levels are discussed and harmonized
- The Forum reports regularly to TCC and takes up any relevant discussion within the domain of cold/warm powering and protection of the HL-LHC circuits in collaboration with the relevant WPs



- Two participants have been nominated by the Work Package Leaders.
- WP Leaders and Deputies as well as Group Leaders receive invitations ex-officio and are invited to attend at their own discretion depending on the agenda.
- Leaders of involved Groups have endorsed the membership and in some cases proposed additional names.
- First meeting has been organized for July 12<sup>th</sup>, the second for July 26<sup>th</sup>.
- Meetings will be organized on a 2-week basis.



## Membership

| Work Packages | WP Leader                  | Deputy WP<br>Leader      | HL-MC Forum<br>Member 1 | HL-MC Forum<br>Member 2            |
|---------------|----------------------------|--------------------------|-------------------------|------------------------------------|
| WP2           | Gianluigi Arduini          | Rogelio Tomas<br>Garcia  | Massimo<br>Giovannozzi  | Riccardo De Maria                  |
| WP3           | Ezio Todesco               | Paolo Ferracin           | Juan Carlos Perez       | Susana Izquierdo<br>Bermudez       |
| WP6a          | Amalia Ballarino           | Vittorio Parma           | Patrick Retz            | Amalia Ballarino<br>Vittorio Parma |
| WP6b          | Jean-Paul Burnet           | Michele Martino          | Michele Martino         | Hugues Thiesen                     |
| WP7           | Daniel Wollmann            | Reiner Denz              | Arjan Verweij           | Jens Steckert                      |
| WP9           | Serge Claudet              | Rob Van<br>Weelderen     | Rob Van<br>Weelderen    | Juan Casas-<br>Cubillos            |
| WP11          | Frederic Savary            | Herve Prin               | Arnaud Foussat          | Ludovic Grand-<br>Clement          |
| WP15          | Paolo Fessia               |                          | Paolo Fessia            | -                                  |
| WP16          | Marta Bajko<br>Mirko Pojer |                          | -                       | -                                  |
| WP17          | Laurent Tavian             | Beniamino Di<br>Girolamo | -                       | -                                  |

#### **Chair and Scientific Secretaries:**

Felix Rodriguez Mateos Hugo Bajas Samer Yammine

#### **Representation from MP3:**

Arjan Verweij Daniel Wollmann

#### **Representation from ELQA:**

Mateusz Bednarek Giorgio D'angelo

#### For info list:

Lucio Rossi
Oliver Bruning
Andrzej Siemko
Luca Bottura
Dimitri Delikaris
Mike Lamont
Rudiger Schmidt
Markus Zerlauth
Jean-Philippe Tock



## Many thanks for your attention!

