

Feedback on quench heaters versus energy extraction on HL corrector magnets

F. Rodriguez Mateos, Ezio Todesco with input from Fernando Toral (CIEMAT) HL-LHC TCC July 21, 2016

Introduction

- Following recommendations from the HL-LHC Magnet Circuits Review, energy extraction is under discussion for a number of corrector circuits as an alternative to quench heaters:
 - Orbit correctors in IT (MCBXFA/B)
 - Super-ferric quadrupole in IT (MQSXF)
 - Orbit correctors in D2 (MCBRD)
- As a decision has not yet been taken for these circuits, a strategy for all them is due for the development work within the upcoming months

The MCBXF magnet

CIEMAT collaboration

CERN project engineer: J. C. Perez

Magnet	Units	MCBXFB		MCBXFA	
Inner Dipole (ID) & Outer Dipole (OD) parameters		ID	OD	ID	OD
Nominal field (Stand-alone)	Т	2.11	2.23	2.11	2.23
Nominal Field (Combined)	Т	3.07		3.07	
Nominal current	А	1630	1490	1530	1395
Coil peak field	Т	4.1 (ID)		3.9 (ID)	
Working point	%	50.1 (ID)		47 (ID)	
Static self-inductance (nominal current)	mH	59.2	134.8	108.5	247
Magnetic stored energy (nom. Current)	kJ	78.6	149.6	127	240.3
Aperture	mm	156	230	156	230
Iron yoke Inner Diameter	mm	316		316	
Iron yoke Outer Diameter	mm	614		614	
Total number of turns	-	140	191	140	191
Cable length needed for each pole/coil	m	357	481	637	863
Turns per block in inner layer	-	50/10/11	45/39/21	50/10/11	45/39/21
Turns per block in outer layer	-	28/28/13	43/38/5	28/28/13	43/38/5

MINISTERIO

DE ECONOMÍA

Protection

- Energy extraction on crowbar
 - at the limit for protection of the long magnet
- Results from simulations:
 - Here **50 V** assumed, i.e. resistance of 30 m Ω
 - One gets 410 K at 108% of nominal ...

Hot spot temperatures (K)	Magnet type	Combined powering	Stand-alone powering
Inner dipole	Short	196	220
	Long	267	305
Outer dipole	Short	232	260
	Long	311	355

Simulation features

- Some features are not modelled:
 - The vertical transverse thermal conductivity is not properly modelled due to the spacers (optimistic).
 - Quench-back is not included, but it is not likely to help because the current decay is slow (pessimistic).
 - Adiabatic boundary conditions (pessimistic).
 - AC losses in nearby metallic parts are not included (pessimistic).
 - An approximate **field map** is used.
 - Uncertainty about material properties (mainly resin and Nomex).

Heaters in short prototype

- Decision is taken, that the ongoing short
 prototype will be equipped with heaters on
 blocks 4 & 5:
 - To be on the safe side.
 - To check the assembly feasibility.
 - To ease assembly of internal voltage taps.

Protection strategy

- Heaters will be explored
 - The coil is impregnated, hence the heater will be impregnated with the coil
 - The presence of double collaring implies difficulties, so if an energy extraction with reasonable cost is available this would reduce the risk
- We should consequently also explore energy extraction at 100 V or larger voltage

Energy Extraction Systems

- TE/MPE is now envisaging the following alternatives in order to propose solutions in the 1 to 2 kA range:
 - as a by-product of the large effort put in place for the manufacturing of 7.5kA, IGBT-modules for SM18, IGBT-based systems have been designed also for these lower currents and a prototype is under construction with minor additional efforts
 - an Addendum is being prepared with the Łodz University of Technology (PL) – existing Framework Agreement– as to study and possibly develop energy extraction systems based on vacuum switches with different commutation techniques

HL-LHC EE (some) alternatives

Switch system based on natural commutation, as developed by the Łodz University of Technology

3kV Vacuum circuit breakers family, 250, 400, 800 A for electrical railway traction vehicles (ŁUT, Łodz, Poland)

Quench Heater Discharge Supplies (HDS)

- The plan is to use the same units as the ones existing for LHC
 - Bipolar ± 450 V, 7.05 mF
 - High reliability shown during years of LHC operation (around 1/mil/year)
- Time for switching of thyristors in conduction has to be reduced to 1 ms from 4 to 5 ms at present
 - Relays to be replaced by solid-state devices
- Units have been sent to KEK and similar ones are being used at FNAL for the tests of the models and prototypes

9

EE vs QH comparison

Quench heater

- Intrusive element in magnet structure
- Low maintenance
- Heaters cost about 2 kCHF/meter of magnet
- Power supply costs about 5 kCHF/unit (to this, cost of QH + wiring is to be added)
- High availability
 - Connections to be consolidated
- Development costs (?)
- Less space (19", 6U) (x 2 units/magnet?)

Energy extraction

- External element
- Yearly maintenance (if mechanical)
- Permanent losses (if IGBT)
- EE system costs about 32 kCHF/unit – based on IGBT systems
- High availability
- Development costs (estimated to 200kCHF)
- Space is one full rack/system (700x900x2000mm)

Summary of conclusions

- Heaters will be used on the first model
 - Important feedback on the magnet manufacturing
- Test results will allow to refine the model
 - Contribution of AC losses and quench back
 - Maybe the extraction at 50 V (crow-bar) is enough
- Extraction on larger voltages (larger resistance, above 50 m Ω) should continue to be explored
 - This implies energy extraction external to crow-bar
 - TE/MPE will proceed with development on the different axis
- Then (end of 2017) a decision will be taken for MCBXF
- Same strategy to be applied to the other magnets

11

Many thanks for your attention!

