

CERN – 11th May 2016

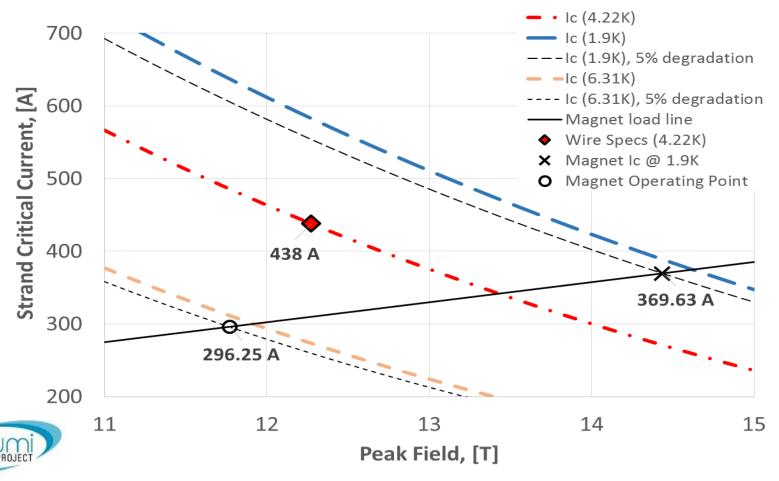
Baseline Conductor Specification

B. Bordini

Outline

- Introduction
 - > HL-LHC wire technical specs
 - ➤ HL-LHC magnet margins
- EuroCirCol Baseline Conductor
 - $\rightarrow J_c(T, B)$ scaling
 - Conductor Performance and Magnet Margins
- Instability @1.9 K and Magnet Margin
 - High Field Instability and Current Margin
 - Effect of the Strand Diameter and J_e
 - Effect of Cu/Non-Cu and RRR
- Layout of the EuroCirCol Baseline conductor
- Conclusions

Introduction HiLumi Wire Technical Specs


	11 T Dipole	MQXF Quadrupole
Wire diameter Φ	$0.700 \pm 0.003 \text{ mm}$	$0.850 \pm 0.003 \text{ mm}$
Nominal sub-element diameter	< 50 μm	< 55 μm
Copper to non-copper ratio	1.15 ± 0.1	1.2 ± 0.1
Wire twist pitch	$14 \pm 2 \text{ mm}$	$19 \pm 3 \text{ mm}$
Wire twist direction	Right-handed screw	Right-handed screw
Minimum critical current @ 4.22K, 12T	438 A	632 A
Minimum critical current @ 4.22K, 15T	/	331 A
RRR (after full heat treatment)	> 150	> 150
n-value @ 4.22K, 12T	> 30	> 30

 $J_c(4.22 \text{ K}, 12 \text{ T}) \approx 2450 \text{ A/mm}^2$ $J_c(4.22 \text{ K}, 15 \text{ T}) \approx 1280 \text{ A/mm}^2$

Introduction 11 T Wire Technical Specs & Magnet Margin

4.4 K Temperature Margin; 20 % Margin on the Load-Line; I_c margin about 105%

EuroCirCol Baseline Conductor

 J_c (T, B) scaling

Scaling Law

Parameters

$$J_{c} = \frac{C}{B} \times b^{0.5} (1 - b)^{2} \qquad b = \frac{B}{B_{c2}}$$

$$C = C_{0} \notin (B_{c2}) (1 - t^{2}) \mathring{\mathbb{B}}^{2}$$

$$B_{c2} = B_{c20} \notin 1 - t^{1.52} \mathring{\mathbb{B}}$$

$$t = \frac{T}{T_{c0}}$$

$$J_c(16 \text{ T}, 4.22 \text{ K}) = 1500 \text{ A/mm}^2$$

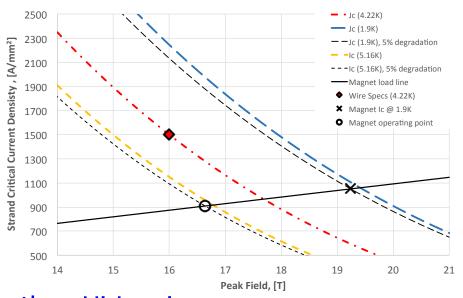
$$B_{c2}(4.22 \text{ K}) = 25.5 \text{ T}$$

$$T_{c0} = 16 \text{ K}$$

$$\alpha = 0.96$$

- Fresca2 RRP wire (1 mm 132/169)
 - \rightarrow $J_c(15.2 \text{ T}, 4.22 \text{ K}) = 1557 \text{ A/mm}^2 \text{ (RMS 67 A/mm}^2)$
 - $> B_c (4.22 \text{ K}) = 25 \text{ T}$

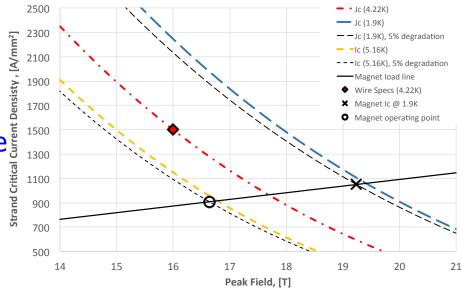
 $J_c(16 \text{ T}, 4.22 \text{ K}) = 1280 \text{ A/mm}^2$


EuroCirCol Baseline Conductor Conductor Performance and Magnet Margins 1/2

- By assuming:
 - *> B*_{bore} 16 T;
 - $> B_{peak}/B_{bore} = 1.04$
 - *▶ B*_{bore} ultimate 18.5 T

- Magnet Margins:
 - > 15.6 % on the load line lower than Hi-Lumi
 - > 3.3 K significantly lower than Hi-Lumi (especially considering the enthalpy margin)
 - ➤ Current margin @ operating point 106.7 % similar to HiLumi

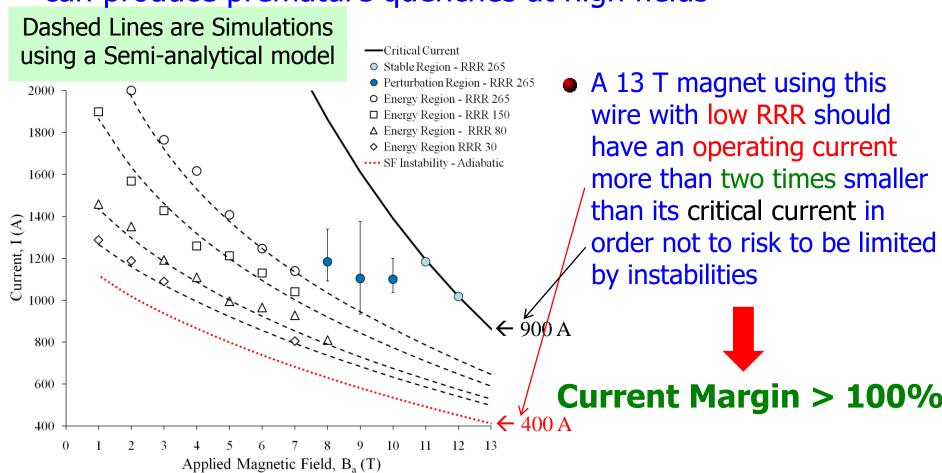
All the three magnet margins have an impact on the final magnet performance; changing one conductor parameter has not necessarily the same impact on the three margins (example next slide)


EuroCirCol Baseline Conductor

Conductor Performance and Magnet Margins 2/2

By assuming:

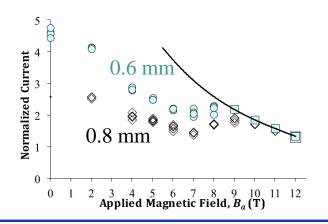
- > same magnet design (load line & operating point as previous slide)
- > same conductor specification but the $B_{c2}(4.22 \text{ K})$, from 25.5 T to 23 T

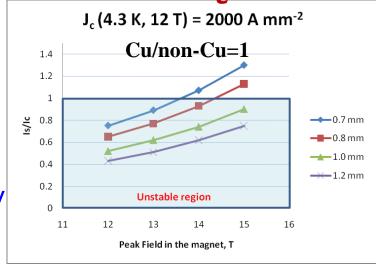

• Magnet Margins:

- > 13.7 % (instead of 15.6 %) on the load line ◆
- > 2.9 K (instead of 3.3 K) **↓**
- > Current margin @ operating point 120.6 % (instead of 106.7 %) ↑

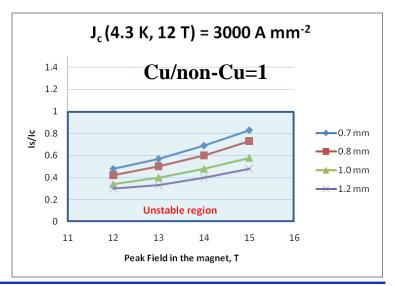
Instability @1.9 K and Magnet Margin High Field Instability and Current Margin

 Because of magneto-thermal instabilities, small perturbations can produce premature quenches at high fields

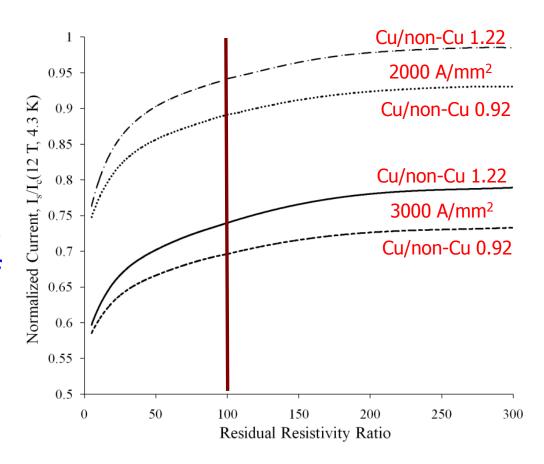



Instability @1.9 K and Magnet Margin

Effect of the Strand Diameter and J_e


- The current margin of the magnet has to be larger the larger is
 - > The strand diameters
 - ➤ The Engineering Critical Current Density

RRR	J _c @ 4.2 K, 12 T [A/mm ²]	Strand diam. [mm]	Cu/ non-Cu
290	2978	0.8	0.927
270	2842	0.6	0.927


Adiabatic Calculation

Instability @1.9 K and Magnet Margin **Effect of Cu/non-Cu and RRR**

 A larger current margin has also to be envisaged in the case of a smaller Cu fraction and smaller RRR

Ratio between the quench current and (12 T, 4.3 K) as a function of RRR in the case of high field instability at 12 T and 4.3 K for different strands.

Layout of the EuroCirCol Baseline conductor Wire Diameter and non-Cu Fraction 1/2

- In order to build a Nb₃Sn magnet operating at 16 T and with a relatively large inductance (to limit the voltage within the magnet), magnet designer are naturally directed (by electromagnetic calculations) towards large:
 - strand diameters

> superconductor Fraction in the wire

(In the high Field Region)

- On the other hand increasing two much these two parameters has a negative impact on the magnet performance
 - ➤ ↑ Diameters and non-Cu fraction → ↓ lower
 - lower magnet stability (we need a larger current margin)

non-Cu fraction

→ ↑ conductor degradation

non-Cu fraction

→ billet yield (more breakages during wire production)

Layout of the EuroCirCol Baseline conductor Wire Diameter and non-Cu Fraction 2/2

- Taking into account the pros and cons presented in the previous slide the larger wire diameter and Non-Cu fraction for EuroCirCol were set respectively equal to 1.1 mm and to 50%
- These maximum values for the diameter and Non-Cu are challenging :
 - 1 mm is the largest diameter used for building Nb₃Sn accelerator magnets in the last 15 years
 - the non-Cu fraction of the HL-LHC 11 T (0.7 mm wire) is 46.5%; of the HL-LHC MQXF (0.85 mm wire) is 45.5 %; of the FRESCA2 (1 mm wire) is 44.5 %
- Regarding the minimum wire diameter, it was set equal to 0.7 mm because:
 - the interest of magnet designer towards smaller wire diameters is not much
 - > Wire manufacturers still have a good billet yield with this diameter

Layout of the EuroCirCol Baseline conductor Cable Constrains

- For the cable the following constraint were set
 - Maximum number of strand equal to 40
 - > Maximum Compaction C of the cable thin edge larger than 0.14 (c = 1 h/2d; where h is the cable thin edge thickness and d the wire diameter)
- The maximum number of strands was mainly fixed because of the present limitation of the CERN cabling machine and the impossibility of an upgrade in a relatively short term

 The compaction factor was set in order to guarantee a degradation of the critical current due to cabling lower than 5%

EuroCirCol Main Conductor Study

 In the development of a 16 T Nb₃Sn magnet one of the main issue is the large transversal stress applied on the conductor (significantly larger than 150 MPa)

- In the framework of EuroCirCol, we intend to investigate the effect of transverse pressure on Nb₃Sn Rutherford Cables
 - Correlate the wire measurements under transversal pressure carried out at UniGe with cable measurements
 - 1. Sub-cable (18-1mm-wires) measured at CERN and Twente for benchmarking
 - 2. Full size cable (40 wire) measured at Twente
 - \blacktriangleright Verify the compatibility of high J_e with large transversal pressure on the conductor

Conclusions

- A scaling law for the J_c of the EuroCirCol Conductor was defined
 - > The field and temperature dependence is based on state of the art conductor
 - In the calculation of the magnet margin we have to consider the possibility that some of the reference parameters (B_{c2} ?, p and q?) might change once the final wire will be developed
- The J_c (4.2 K, B_p =16 T) was set equal to 1500 A/mm²
 - ➤ This value is about 20% larger than the average value obtained for the RRP FRESCA2 conductor; nevertheless to guarantee an efficient wire production the conductor performance has to be improved of at least 35 %
 - $> J_c (1.9 \text{ K}, B_p = 16 \text{ T}) \text{ about } 2200 \text{ A/mm}^2$
- In order to meet as much as possible the needs of magnet designers, wire diameters up to 1.1 mm and non-Cu fraction up to 50 % were considered; larger values were evaluated to risky because of: magnet stability, conductor degradation due to cabling, reduced billet yield
- In the framework of EuroCirCol we intend to investigate the effect of

Thank You For Your Attention!

- A scaling law for the J_c of the EuroCirCol Conductor was defined
 - > The field and temperature dependence is based on state of the art conductor
 - \triangleright In the calculation of the magnet margin we have to consider the possibility that some of the reference parameters (B_{c2} ?, p and q?) might change once the final wire will be developed
- The J_c (4.2 K, B_p =16 T) was set equal to 1500 A/mm²
 - ➤ This value is about 20% larger than the average value obtained for the RRP FRESCA2 conductor
 - $\rightarrow J_c$ (1.9 K, $B_p = 16$ T) about 2200 A/mm²
- In order to meet as much as possible the needs of magnet designers, wire diameters up to 1.1 mm and non-Cu fraction up to 50 % were considered; larger values were evaluated to risky because of: magnet stability, conductor degradation due to cabling, reduced billet yield
- In the framework of EuroCirCol we intend to investigate the effect of transverse pressure on Nb₃Sn Rutherford Cables

