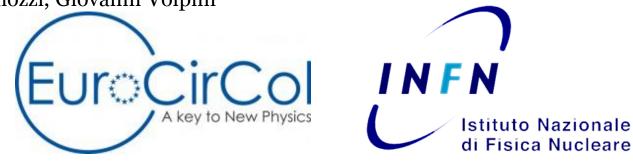
EuroCircol - The Cosine-theta Configuration:


Electromagnetic Design

<u>Massimo Sorbi</u> on behalf of INFN team:

Giovanni Bellomo, Barbara Caiffi, Pasquale Fabbricatore, Stefania Farinon, Vittorio Marinozzi, Giovanni Volpini

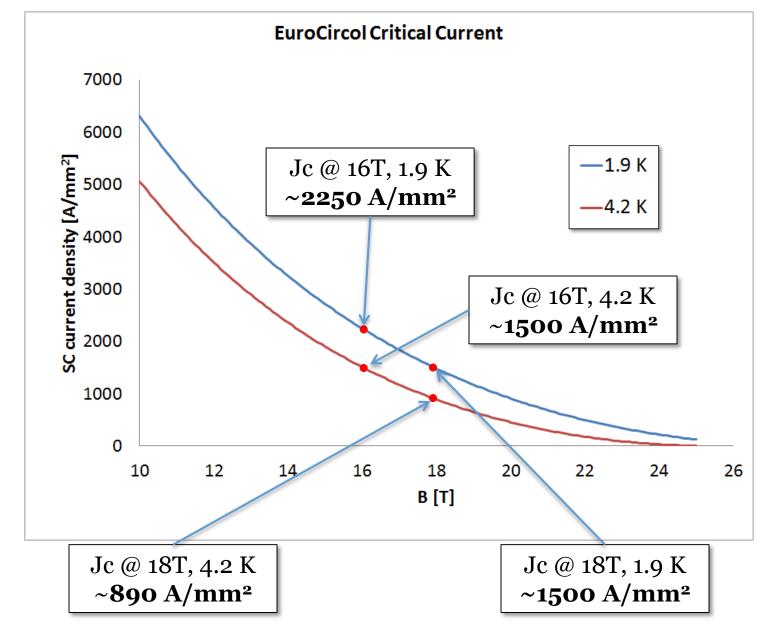
Università degli Studi di Milano

1st Review of EuroCirCol WP5 , CERN, 11-13 May 2016

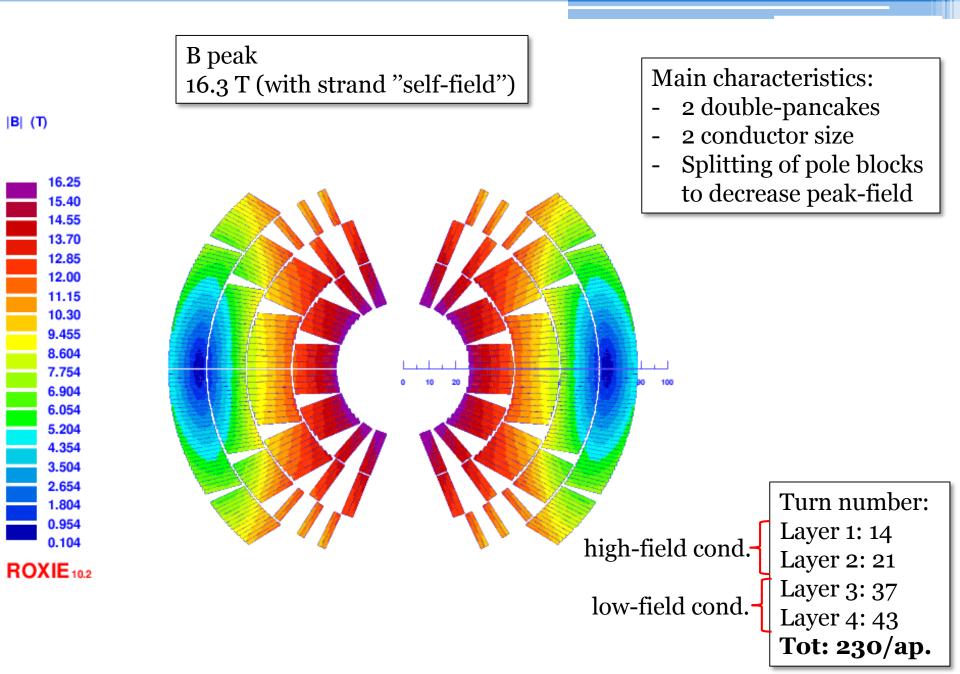
Outline:

- 1. Main design parameters
- 2. Magnetic design
- 3. Protection
- 4. Some considerations
- 5. Conclusions

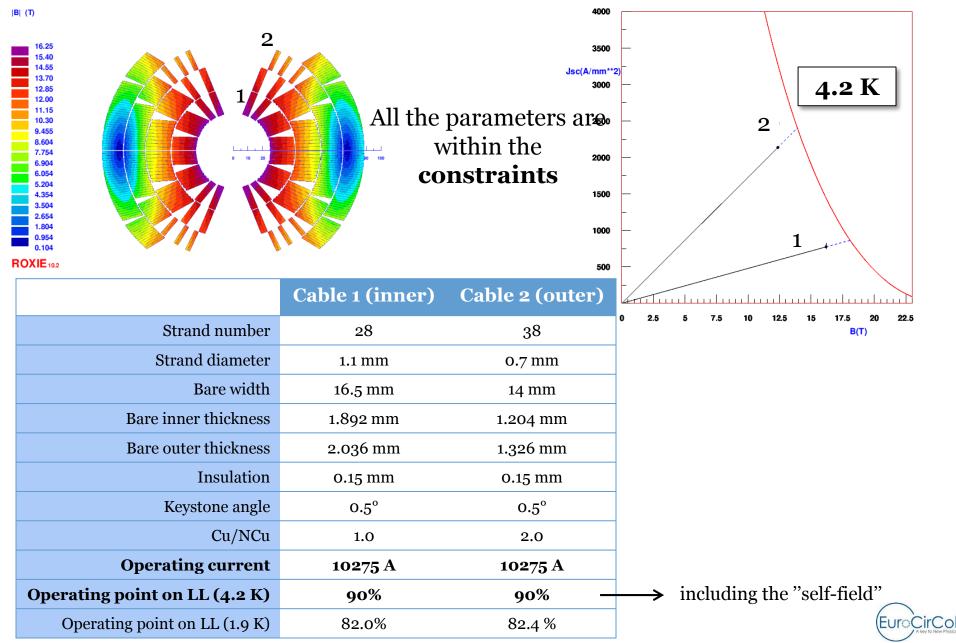
1.1 Main design parameters

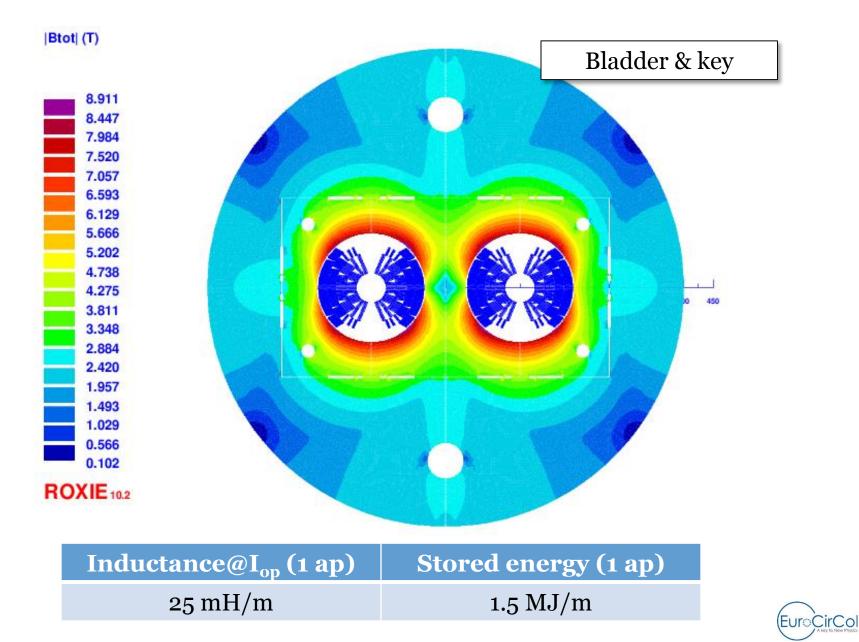

Constraints for the magnet design			
Bore inner diameter	50 mm		
Beam distance	250 mm		
Bore nominal field	16 T		
Operating temperature	4.2 K 🗕	→	1.9 K
Operation point on the load line	90 %		
Maximum strand number per cable	40		
Cable insulation thickness	0.15 mm		
Cu/NCu	≥1		
Field harmonics (geometric/saturation)	≤3/10 units		
Peak temperature (105 % of operating current)	350 K		
Yoke outer radius	400 mm		
Maximum voltage to ground	2 kV		

- > Magnetic design for a **<u>double aperture</u>** magnet
- > Mechanical design for a **<u>single aperture</u>** magnet

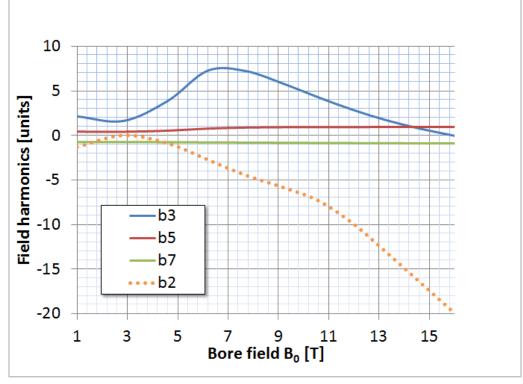


1.2 Main design parameters

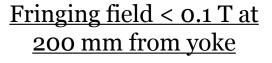


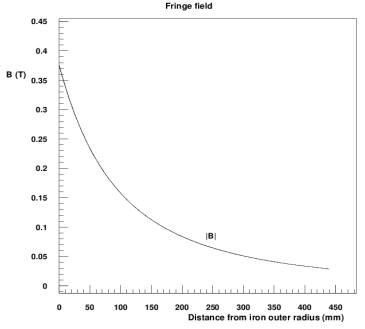


2.1 Magnetic design – cross section



2.2 Magnetic design – iron yoke




2.3 Magnetic design – field quality

NORMAL RELATIVE MULTIPOLES @ 16 T:			
b 1: 10000	b 2: -19.94	b 3: -0.01	
b 4: -0.49	b 5: 0.97	b 6: -0.01	
b 7: -0.87	b 8: -0.00	b 9: 0.28	
b10: 0.00	b11: 0.66	b12: 0.00	
b13: -0.13	b14: 0.00	b15: 0.03	

- b2 optimization <u>not</u> <u>performed</u>
- Persistent currents
 not considered

EuroCirCol

2.4 Magnetic design – strand area

Conductor 1:

- 28 strands
- Ø = 1.1 mm
- Cu/NCu = 1
- $J_{cu} = 772 \text{ A/mm}^2$
- Strand Area = $37.3 \text{ cm}^2/\text{apert.}$
- Weight (FCC) = 4.3 ktons

Conductor 2

- 38 strands
- $\emptyset = 0.7 \text{ mm}$
- Cu/NCu = 2.0
- $J_{cu} = 1047 \text{ A/mm}^2$
- Strand Area= 46.8 cm²/apert.
- Weight (FCC) = 5.3 ktons

COND. AREA (double ap.): = 168.1 cm²

FCC-hh dipoles:

COND. MASS: = 9.6 ktons

Data for FCC-hh collider

Number of dipole units	4578	
Dipole lenght	14.3 m	
Conductor density	8.7 kg/dm ³	

High Cu content

for protection

reasons!

2.5 Magnetic design – strand area

> Option to <u>reduce cost</u>

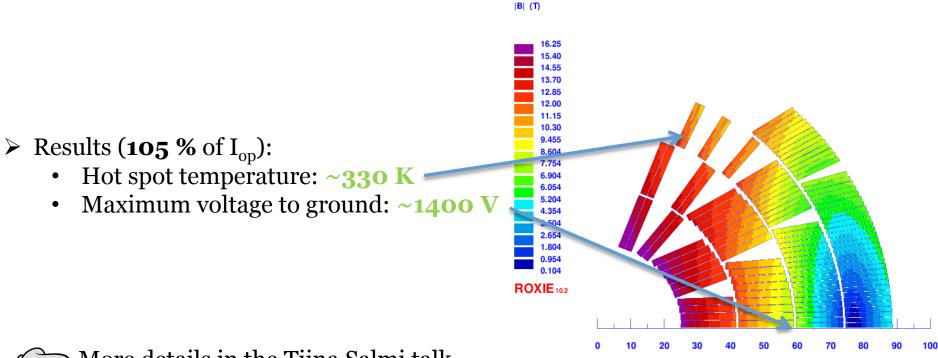
Conductor 2

25 (SC)+13 (Cu) strands

- $\emptyset = 0.7 \text{ mm}$
- Cu/NCu = 1
- $J_{cu} = 1047 \text{ A/mm}^2$
- Strand Area (SC)= 30.7 cm²/apert.
- Strand Area (Pure Cu) = $16.0 \text{ cm}^2/\text{apert.}$
- SC weight (FCC) = 3.50 ktons
- Pure Cu weight (FCC) = 0.75 ktons
- Pure Cu cost << SC cost

- ➤ Stability as in cable 1 (Cu/NCu = 1)
- Current diffusion time in the Cu strands to be evaluated and compared with discharge time
 - Zero order evaluation seems ok (few ms)

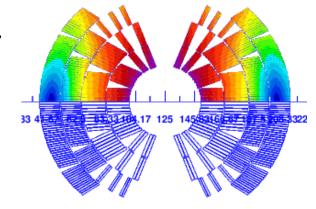
TOTAL SC STRANDS: = 9.6 -> 7.8 ktons

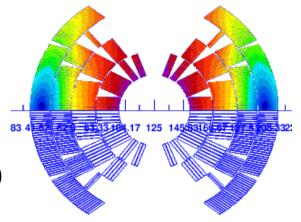


3.1 Protection

Simulations from Coodi (Tiina Salmi)

- ➤ Main assumptions:
 - No energy extraction
 - Quench induced in the whole magnet **40 ms** after initial quench start
 - Inductance dependence on the current
 - Material properties from **NIST**


→ More details in the <u>Tiina Salmi talk</u>



4.1 Other considerations

- Similar configurations are possible:
 - same conductor area but different turn number distribution on layers
 - possible to re-distribute the Lorentz forces or reduce number of blocks
- The minimum curvature radius of high-field conductor $(\emptyset = 1.1 \text{ mm})$ is 6.3 mm (in LHC dipole is 7.3 mm with $\emptyset = 1.07 \text{ mm}$)
- The present configurations have been optimized in order to <u>minimize</u> the conductor area (inside the general constrains)
- Important limitations come from protection constrains (40 ms delay & $T_{max} < 350 \text{ K} \Rightarrow Cu/NCu = 2.0 \text{ L.F. cond.}$)

5.1 Conclusions

- The presented 16 T cosine-theta accomplishes the Eurocircol design constraints
 - Operating point on the load-line is 90% at 4.2 K \rightarrow 82% at 1.9 K
 - Good field quality
 - Hot spot temperature **330** K @ 105% I_{op}
- cosine-theta advantage: <u>less conductor area, less costs</u>
 - 168.1 cm² (total 9.6 ktons) \rightarrow 136.0 cm² (total 7.8 ktons)

5.2 Critical aspects

- Maximum voltage during discharge (see section on protection study). Possible cure:
 - Decrease turn number and increase current (both decreasing the margin and increasing the conductor strands n. to > 40)
 - Increase the subdivision of the layers to better mix <u>high field</u> region (resistive) with <u>low field</u> region (inductive) → increase the number double pancake

