

Quench protection of the 16T dipoles for the FCC

Tiina Salmi and Antti Stenvall, Tampere University of technology, Finland Marco Prioli, CERN

In collaboration with EuroCirCol wp 5 members (CERN, CEA, INFN, CIEMAT)

1st EuroCirCol review CERN, May 12th, 2016

How to design 16 T dipoles that can be protected? And keep the magnets as compact as possible.

Quench protection analysis was integrated into the magnet design:

1. Assumptions about the safe temperatures and voltages

- Maximum allowed hotspot temperature: <u>350 K</u>
 - Same reference than HiLumi: Based on experiments with LARP Nb₃Sn magnets, and epoxy transition temperature (~380 K).
 Note: Need more experiments with cored cables to confirm this.
 (G. Ambrosio, WAMSDO 2013.)
 - Computed from MIITs (adiabatic)
- Maximum voltages inside the coil: <u>2 kV</u>
 - Design choice, based on insulation thickness.

Impact of thermal gradients still to be analyzed – for now no set limitations

May 12th , 2016 EuroCirCol

2. Assumptions about the protection system

- Quench detection by measuring the resistive voltage
 - Assumed detection delay = 20 ms (includes validation + switches' delay)
 - Based on the LHC experience
- Quenching magnet by-passed using a diode, like in LHC:

$$L_{mag}(l) \quad R_{mag}(t)$$

$$\tau(t) = R_{mag}(t)/L_{mag}$$

- Protection by either quench heaters or/and CLIQ, which quench the coil and drive the current decay
 - Quench delays were estimated based on improved HiLumi heatertechnology (to get the first assumption for the protection efficiency)

2. Obtainable quench delay

- Assuming HiLumi heater technology applied to FCC dipole
 - + Stainless steel strip heaters insulated from the coil by polyimide
 - + Assumed improvement: All coil surface can be covered

Heater delay simulations using CoHDA

Case A: Optimistic: 150 W/cm² peak power, 50 µm polyimide Case B: Less optimistic: 50 W/cm² peak power, 100 µm polyimide

2. Obtainable quench delay

- Assuming HiLumi heater technology applied to FCC dipole
 - + Stainless steel strip heaters insulated from the coil by polyimide
 - + Assumed improvement: All coil surface can be covered

Heater delay simulations using CoHDA

The design requirement: If the magnet is completely resistive 40 ms after the initial quench, the peak temperature must be below 350 K at 105% of lop

3. Methods and tools for quench analysis

Two new tools developed for fast feedback during the magnet design

"Temperature calculation work sheet" and "Coodi"

Both use adiabatic temperature calculation

+ In the spreadsheet discretization in block level, in Coodi cable level

- Cable current from SC to Cu at t = total protection delay (input)
- Material propersties from NIST (*T* and *B* dependence accounted)
- Cable heat capacity includes the cable insulation and voids (G10)
- No heat diffusion
- Magnetic field map and inductance from ROXIE

3. Calculation of voltages (only in Coodi)

1. Total voltage computed is at each turn:

A sum of resistive and inductive component.

$$V_i = V_{res,i} + V_{ind,i}$$

$$V_{res,i} = R_i I_{mag}$$

The turn resistance is based on the Cu resistivity and area and turn length.

$$V_{ind,i} = L_{eff,i} \frac{\Delta I_{mag}}{\Delta t}$$

The "effective inductance" accounts the turn self inductance and the mutual inductances with the other turns.

3. Calculation of voltages (only in Coodi)

2. Potential to ground is obtained by summing the turn voltages (in the order of current flow).

3. Calculation of voltages (only in coodi)

3. Critical peak values are defined from the potential:

A	В	C	D	E	F	G	Н		J	K	L	
INPUT			Cak		motoro			Factor for twist pitch	1.035	1	5	
Only modify cells shaded with	this color!		Cat	ne para	meters					Calculation		
Cable ID	SC mat. (1 = Nb3Sn, 2 = Nbti)	Width bare (mm)	Mid thickn.bare (mm)	Ins. Mat. (1 = 610, 2 = Kapton)	Ins. Thickn (mm)	Nstrands	strand diam (mm)	strand Cu/SC	RRR	Jcu after quench (A/mm2)	ACu	
1	1	15.3	2	1	0.15	26	11	1	110	738.9	12.790	
2	1	9.8	2	1	0.15	16	1.1	1.7	110	953.4	9.911	
3	1	12	19	1	0.15	14	1.05	3.5	110	968.1	9.761	
4	1	8.35	19	1	0.15	14	1.05	4	110	941.2	10.040	
	397	,	17.32605			Calculation						
Block #	Nturns	Cable ID	B peak @Inom (T)	B min @ Inom (N)	B ave @Inom (T)	Tcs ave (K)	Tcs for T Margin (K)	Heater delay (ms)				_
1	33	1	17.32605	11.24151	14.3	7.5	5.3	20	(B)	(T)		
2	5	1	16.855125	13.120275	15.0	7.0	5.7	20				
3	39	1	17.15553	8.3895	12.8	8.5	5.5	20		16.41		
4	37	2	14.53242	9.848685	12.2			20		14.68		
5	4	2	13.92258	10.498005	12.2 C	s calci	Jated I	20		13.82 12.96		
a	্ব	2	13,42005	9 91397	11.2			20		12.10 11.23		
Coil b	locks: #	fof turns, ca	able, fiel	d		sed on	the	20 20		10.37 9.515		
J		- -	10.010400	2.000000	6.3	rood I	a fit	20		7.792		• 2004
10	30	3	9.2421	1.26357	<u>5.3</u> ag	reed J	C-III. 🛓	20		6.930 6.068		
11	36	4	9.49074	0.061635	4.8			20		5.206	-01	
12	26	4	8.616825	0.347025	4.5	11.0	7.4	20		3.483		
13	2/	4	10.143315	2.77872	6.5	9.3	5.9	20		2.621 1.759		
14	17	4	0.83236	1.682410	3.8	11.6	9.8	20		0.897		
15	0	0	0	0	0.0	0.0	0.0	10000	RC			
10	0	0	0	0	0.0	0.0	0.0	10000				
18	0	0	0	n n	0.0	0.0	0.0	10000				
19	0	0	0	0	0.0	0.0	0.0	10000	<u> </u>			
20	0	0	0	0	0.0	0.0	0.0	10000				
									. 99	Field min ar	id max from	ı roxie
Magnet length (m)	14	Calculation					-	neate	r	1	16.501	
Inductance (mH/m)	1.10E+02	Stored energy (MJ/m)	4.91							2	16.0525	
Up. current (A)	9450	Stored energy (J/mm3 of Ins. Cond.)	0.134		imag_nom (A)	9000		delav-		3	16.3386	
Op. temperature (K)	4.5	Sored energy (J/g of ins. Cond. (estim.))	19.71		scaling factor	105				4	13.9404	
Number of coils	2				scaling ractor	1.05				5	13.2596	
	L									6	12.781	
Detection delay (ms)	20	I lon induc	tab ta							7	10.55	
Rdump (Ohm)	0	Tiop, mau	JL., UEL.							8	10.2853	
										9	10.0747	
		delay,								10	8.802	
						Ουτρ	UT: Wors	st case				
OUIPUI						la a b a ca				11	9.0388	
						notsp	στ			12	8.2065	
MIITS (MAAS)	16.61	HOTSPO	T TEMPERATURE (K)	305.2	- upda	ites in se	econds v	whe	n		
						chang	ing the i	nnut		13	9.6603	
						unany	ing the l	iput.		14	5.5552	
	Tm	ax after quench (K)										
Block #	L Uuenched hu heater	Unitial normal zone ocks PH quenched / Temp calc -h	locks Hotspote / Tos f	it Nh3Sn - average field	Tos fit Nh3Sn - nea	k field / Tas ft N	hTi - average field	Tos fit NhTi - neak fie		ble 4		
ut_qpspreaus				a noon average nelu				rea ne no ri - peak ne			700	
ady 🛄										쁘니끤	/0% (-)-	

4. Analysis of the designed magnets

Design, cabl	e A _{ins.}	f _{Cu}	F _{Nb3S}	f _{G10}	0 Block (v26_b)	CommonC (v1h_intragrad_t2)
Block, 1 (HF)	32.5	0.36	0.36	0.2	7	
Block, 2 (LF)	21.9	0.34	0.34	0.33	3	
Cosθ, 1 (HF)	38.0	0.36	0.36	0.28	8	
Cosθ, 2 (LF)	22.4	0.45	0.22	0.32	2	
CC, 1 (HF)	33.9	0.36	0.36	0.29	9 CosT (16T v28b-38-opt5d)	0 20.83 41.67 62.5 83.3310
CC, 2 (HMF)	23.2	0.43	0.25	0.32	2	
CC, 3 (LMF)	19.0	0.51	0.15	0.34	4	
CC, 4 (LF)	19.0	0.53	0.13	0.34	4	
	I _{mag,nom} (A)	L	(mH/m))		
Block	8440	42	2.5 x 2			
Cosθ	10275	2	6.0 x 2			
CommonC	9000		110			

4. Simulated hotspot temperatures assuming uniform protection delay

All the coil resistive after the protection delay

Assume worst-case location for hotspot

All designs valid from hotspot temperature point of view (< 350 K with 40 ms protection delay).

Simulated temperature distributions (40 ms uniform quench delay)

Simulated potential to ground

Peak potential to ground ~160 ms

May 12th , 2016 EuroCirCol

Simulated potential to ground

Peak potential to ground ~190 ms

May 12th , 2016 EuroCirCol

Simulated potential to ground

Potential to ground at ~200 ms

4. Simulation with distributed heater delays

Heater delay simulation assuming

- + 25 um thick stainless steel heaters with 75 um polyimide insulation to coil
- + Peak power 100 W/cm², circuit time constant 50 ms
- + Heaters cover all the coil turns entirely

4. Results at 105% of lop

delay = 40 ms								
	T max (K)	V to gnd (kV)	V turn-to-turn (V)	V layer-to-layer (kV)				
Block	308	-1.2+1.2	82	1.1				
CosT	328	-1.4 0.4	103	1.8				
CommonC	315	-2.3 1.4	75	3.3				
Distributed heat	er delays (+ o	detection 20 ms	But voltages are large	Analysis ongoing.				
	T max (K)	V to gnd (kV)	V turn-to-turn (V)	V layer-to-layer (V)				
Block	291	1.6	107	1.6				
CosT	305	1.4	123	2.2				
CommonC	293	2.7	93	4.1				

Coupling-Loss Induced Quench protection system

- CLIQ is a new technology for the protection of superconducting magnets.The core component is the capacitor bank that generates:
 - An alternated transport current in the magnet
 - A variable magnetic field in the coils
 - High inter-filament and inter-strand coupling losses
 - Heat on the superconductor
 - Quick spread of the normal zone after a quench

CLIQ starts quenching a magnet few milliseconds after it is fired

5 ms for the considered block coil

M. Prioli

Connecting CLIQ to the magnet

5/13/2016

CLIQ temperatures

- Most of the coil turns are quenched by CLIQ (identified in red)
 - ~60% of turns quenched within 20 ms (~40% within 10 ms)
 - $T_{HS} = 330K$ is below 350K
- Temperature differences between low-field and highfiled cables are high (110K)
- Peak voltage to ground is about 1.3 kV (rough estimate)

M. Prioli

Decrease in voltages with larger cable (and operation at 1.9 K)

- Block V101: lop = 15600 A, L = 11.5 mH/m/ap. Top = 1.9 K
- 38 / 60 strands, diam 1.1 / 0.7, Cu/Ncu 0.8 / 1.5

Temperature distribution at t = 150 ms (hotspot not shown)

5/13/2016

Conclusion

Integrated quench protection analysis applied to 16 T dipole design

- ✦ Goal was to ensure temperatures stay < 350 K</p>
- The protection efficiency, 40 ms delay, was based on LHC and HiLumi experience and foreseeable improvements in the technology
- + Goal was obtained by fast feedback loop and team work
- 40 ms seems a good aproximation for heaters <u>OR</u> CLIQ separately.
 Probably we can get faster delays considering heating from <u>BOTH</u>.
- Voltages were above 1 kV even in the nominal case
- Designs with larger cable, smaller Cu/SC on HF cable and higher current (smaller inductance) at 1.9 K seem to help
- During the magnet design phase focus was on nominal cases to ensure it is not impossible to protect

May 12th , 2016 EuroCirCol

+ Future analysis includes more details and failure scenarios

References

Maximum temperature: .G. Ambrosio, proc. WAMSDO 2013 Available online: <u>https://arxiv.org/ftp/arxiv/papers/1401/1401.3955.pdf</u>

Time margin: E. Todesco, proc. WAMSDO 2013 Available online: <u>http://cds.cern.ch/record/1643430/files/p10.pdf</u>

Heater delay modeling with CoHDA: T. Salmi, IEEE TAS, **24**(4), 2014 And T. Salmi, PhD Thesis Available online: https://tutcris.tut.fi/portal/files/3827151/salmi_1311.pdf

Current decay with Coodi: T. Salmi, IEEE TAS, 26(4), 2014

CLIQ: E. Ravaioli, PhD Thesis

Available onlline: https://cdsweb.cern.ch/record/2031159/files/Thesis-2015-Ravaioli.pdf

April 13th , 2016

Eur⊙CirCo

EXTRA MATERIAL

5/13/2016

Calculated voltages with uniform quench delay

		Vmax gnd	V turn-to-	V layer-to-	
	% of lop	(V)	turn (V)	layer (V)	Tmax (K)
Block V101	105	-570	55	510	318
Daniel Slide 1	100	-501	71	654	321
Daniel Slide 1	105	572	80	734	352
Daniel Slide 2	105	530	72	513	366
Daniel Slide 3	105	426	76	633	354
Daniel Slide 4	105	526	73	516	360
Daniel Slide 5	105	390	72	632	392
Daniel Slide 6	105	389	68	402	390

Delay time=40ms (uniform quench)

B (T)		Operating current	(kA)	13.5 kA
	_	Field in the aperture	(T)	16.0
		Field in the aperture at SS current	(T)	18.5
16.38		Stored magnetic energy per unit length/ap	(MJ/m)	1.4
15.52		Inductance/aperture	(mH/m)	14.0
14.67		Diameter IL	(mm)	1.1
12.96		Strands/cable IL	-	28
12.11		Cu/Non-Cu IL	-	1.0
11.25		Diameter OL	(mm)	0.75
10.40		Strands/cable OL	-	38
9.550		Cu/Non-Cu OL	-	2.03
8.696		Total area of Cu/aperture	(mm²)	4142
6.988	0 70 011 0 0117 17	Total area of Sc/aperture	(mm ²)	2932
6,134		Total mass of Sc for FCC-hh	(t)	3340
5.280		Total mass of conductor for FCC-hh	(t)	8058
4.426			(A/mm ²)	507
3.571			(A/mm ²)	804
2.717	-		(A/mm ²)	344
1.863	-		(A/mm ²)	513
0.155	_	Average stress in Layer 1	(MPa)	74
DOVIE	_	Average stress in Layer 2	(MPa)	126
HUXIE 10.2	-	Average stress in Layer 3	(MPa)	142
	-	Average stress in Laver 4	(MPa)	103

		Operating current	(kA)	15.1
B (1		Field in the aperture	(T)	16.0
		Field in the aperture at SS current	(T)	18.5
	16.45	Stored magnetic energy per unit length/ap	(MJ/m)	1.3
	15.58	Inductance/aperture	(mH/m)	10.6
	14.72	Diameter IL	(mm)	1.1
	13.86	Strands/cable IL	-	28
	12.99	Cu/Non-Cu IL	-	0.8
	12.13	Diameter OL	(mm)	0.77
		Strands/cable OL	-	38
	10.40	Cu/Non-Cu OL	-	2.44
	8.681	Total area of Cu/aperture	(mm ²)	3671
	7.818	Total area of Sc/aperture	(mm ²)	2816
	6.955	Total mass of Sc for FCC-hh	(t)	3208
	6.091	Total mass of conductor for FCC-hh	(t)	7389
	5.228	J _{ong} IL	(A/mm ²)	566
	4.365		(A/mm ²)	852
	3.501 -		(A/mm ²)	384
	1.775		(A/mm ²)	546
	0.912	Average stress in Layer 1	(MPa)	83
	0.048	Average stress in Layer 2	(MPa)	142
BO		Average stress in Layer 3	(MPa)	119
		Average stress in Layer 4	(MPa)	84

Cross-section, 14.9 kA, ϕ 1.2, Cu 1.0

	Operating current	(kA)	14.9
B (T)	Field in the aperture	(T)	16.0
	Field in the aperture at SS current	(T)	18.5
	Stored magnetic energy per unit length/ap	(MJ/m)	1.4
16.42	Inductance/aperture	(mH/m)	11.1
15.57	Diameter IL	(mm)	1.2
14.71	Strands/cable IL	-	26
13.86	Cu/Non-Cu IL	-	1.0
12 14	Diameter OL	(mm)	0.78
11.29	Strands/cable OL	-	38
10.43	Cu/Non-Cu OL	-	2.16
9.579	Total area of Cu/aperture	(mm²)	4067
8.723	Total area of Sc/aperture	(mm ²)	2894
7.866	Total mass of Sc for FCC-hh	(t)	3297
7.010	Total mass of conductor for FCC-hh	(t)	7929
5.298		(A/mm ²)	507
4.442		(A/mm ²)	821
3.585		(A/mm ²)	347
2.729		(A/mm ²)	527
1.873	Average stress in Layer 1	(MPa)	81
1.017	Average stress in Layer 2	(MPa)	127
0.161	Average stress in Laver 3	(MPa)	156
ROXIE 10.2	Average stress in Layer 4	(MPa)	60

Cross-section, 16.6 kA, ϕ 1.2, Cu 0.8

B (T)	Operating current	(kA)	16.6 kA
	Field in the aperture	(T)	16.0
	Field in the aperture at SS current	(T)	18.5
16.48	Stored magnetic energy per unit length/ap	(MJ/m)	1.3
15.62	Inductance/aperture	(mH/m)	8.4
13.89	Diameter IL	(mm)	1.2
13.03	Strands/cable IL	-	26
12.16	Cu/Non-Cu IL	-	0.8
11.30	Diameter OL	(mm)	0.8
10.44	Strands/cable OL	-	38
9.577	Cu/Non-Cu OL	-	2.63
7 849	Total area of Cu/aperture	(mm ²)	3556
6,986	Total area of Sc/aperture	(mm ²)	2808
6.122	Total mass of Sc for FCC-hh	(t)	3199
5.258	Total mass of conductor for FCC-hh	(t)	7249
4.395		(A/mm ²)	565
3.531	J _{eng} OL	(A/mm ²)	869
2.667	J _{overal} IL	(A/mm ²)	387
0.940	Joveral OL	(A/mm ²)	561
0.077	Average stress in Layer 1	(MPa)	91
POVIE	Average stress in Layer 2	(MPa)	143
	Average stress in Layer 3	(MPa)	132
	Average stress in Layer 4	(MPa)	43

Large cable Cross-section, 18.8 kA

-		Operating current	(kA)	18.8
B (т)	Field in the aperture	(T)	16.0
		Field in the aperture at SS current	(T)	18.5
	16 54	Stored magnetic energy per unit length/ap	(MJ/m)	1.8
	15.68	Inductance/aperture	(mH/m)	9.3
	14.81	Diameter IL	(mm)	1.1
	13.94	Strands/cable IL	-	40
	13.07	Cu/Non-Cu IL	-	1.0
	12.21	Diameter OL	(mm)	1.06
	11.34	Strands/cable OL	-	26
	9.610		-	2.15
	8.743	Total area of Cu/aperture	(mm²)	4547
	7.876	Total area of Sc/aperture	(mm²)	3162
	7.008	Total mass of Sc for FCC-hh	(t)	3602
	6.141	Total mass of conductor for FCC-hh	(t)	8781
	5.274		(A/mm ²)	495
	4.407		(A/mm ²)	819
	2.673	J _{overal} IL	(A/mm ²)	336
	1.805	Overal OL	(A/mm ²)	551
	0.938	Average stress in Layer 1	(MPa)	75
	0.071	Average stress in Layer 2	(MPa)	85
RO	XIE 10.2	Average stress in Layer 3	(MPa)	140
		Average stress in Layer 4	(MPa)	120

Cross-section, 20.9 kA

B (T)	Operating current	(kA)	20.9 kA
	Field in the aperture	(T)	16.0
	Field in the aperture at SS current	(T)	18.5
16.54	Stored magnetic energy per unit length/ap	(MJ/m)	1.7
15.67	Inductance/aperture	(mH/m)	7.0
	Diameter IL	(mm)	1.1
13.94	Strands/cable IL	-	40
12.20	Cu/Non-Cu IL	-	0.8
11.34	Diameter OL	(mm)	1.1
	Strands/cable OL	-	26
9.608	Cu/Non-Cu OL	-	2.39
8.741	Total area of Cu/aperture	(mm ²)	3988
	Total area of Sc/aperture	(mm ²)	3130
6 142	Total mass of Sc for FCC-hh	(t)	3565
5.275	Total mass of conductor for FCC-hh	(t)	8108
4.409	J _{eng} IL	(A/mm ²)	550
3.542		(A/mm ²)	846
2.676		(A/mm ²)	373
1.809		(A/mm ²)	572
0.943	Average stress in Layer 1	(MPa)	83
	Average stress in Layer 2	(MPa)	88
ROXIE 10.2	Average stress in Layer 3	(MPa)	128
	Average stress in Layer 4	(MPa)	90

Block from Clement, V101

	SC mat. (1 =		Mid thickn bare		strand diam		
Cable ID	Nbti)	Width bare (mm)	(mm)	Nstrands	(mm)	strand Cu/SC	RRR
1	1	22	2	38	1.1	0.8	100
2	1	22	1.25	60	0.7	1.5	100

152 cm2 0.8 and 1.5 Cu/nonCu

16/05/03 17:57

225

	T \
1-1 1	

ROXIE 10.2

Magnet length (m)	14.3
Inductance (mH/m)	2 x 11.5
Op. current (A)	15600
Op. temperature (K)	1.9

CLIQ temperatures, case 2

- All turns are quenched by assumption after 20 + 20 ms (identified in red)
- $T_{HS} = 290K$ is well below 350K
- Temperature differences between low-field and highfiled cables are still high (100K)
- Peak voltage to ground is about 1 kV (rough estimate)

LARP experiment to find maximum hotspot temperature

Quench history at TQS01c test, G. Ambrosio, WAMSDO 2013

5/13/2016

2. Obtainable quench delay

- Assuming HiLumi heater technology applied to FCC dipole
 - Assumed improvement: All coil surface can be covered

Heater delay simulations using CoHDA

April 13th , 2016 EurocirCol

COMPUTATION OF EFFECTIVE INDUCTANCES

First computation of mutual inductances M_{ij} between cables C_i and C_j (note both sides of the coils considered)

$$M_{ij} = -\frac{\mu_0}{2\pi A_i A_j} \int_{C_i} \int_{C_j} \ln \|\mathbf{r} - \mathbf{r}'\| \, \mathrm{d}\mathbf{r} \mathrm{d}\mathbf{r}', \tag{1}$$

where A_k is the cross-section area of cable k.

Then, computation of effective inductance L_{eff} for cable C_i when all the cables are in series

$$L_{eff,i} = \sum_{j} \operatorname{sign}(I_i) \operatorname{sign}(I_j) M_{ij},$$
(2)

where $sign(I_k)$ is the direction of current (+ or -) of cable k.

Computation of integrals is done analytically.

Effective self-inductance normalized to the maximum one

Effective self-inductance normalized to the maximum one

Costheta: Voltages between cables at 190 ms

Turn-to-turn (Laterally adjacent turns)

Layer-to-layer (vertically adjacent turns)

CommonCoil v1h_intragrad_t2: Turn-to-turn voltages at ~190 ms

CommonCoil v1h_intragrad_t2: Layer-to-layer voltages at ~190 ms

Block_v26b: Voltages between cables at ~160 ms

Turn-to-turn (Laterally adjacent turns)

0.000e+00 20 40 60 8.249e+01

Layer-to-layer (vertically adjacent turns)

VoltageVert

