

Cost considerations

D. Schoerling, CERN
Maria Durante, Clement Lorin, CEA
Teresa Martinez, Fernando Toral, CIEMAT
May 12th, 2016

Status

- Goal: Provide preliminary estimates of the cost of the dipole magnets as a function of field and temperature based on cross-sections scaled from the EuroCirCol 16 T dipole design and from LHC magnet cost
- Reference parameters: 50 mm aperture, 4578 magnets, 14.3 m long, 16 T

• J_{cu} ≤ 1200 A/mm² (magnet protection at short sample) and Cu/Non-Cu ≥ 1:1(optimized

strand production)

Target cost of magnet

- Cost of LHC dipole magnet taken as reference and target
- LHC dipole cost was around 1 MCHF/dipole, 2000 (around 660 kEUR/dipole, 2000)
- The conductor cost was around 200 kEUR/dipole, 2000
- Assuming 2% inflation over 16 years for the dipoles one finds 900 kEUR/dipole, 2015
- The cost of the LHC dipole without conductor is 630 kEUR/dipole, 2015
- The volume of the structure is larger, the manufacturing process involves more steps due to heat treatment, different insulation technique, etc., but also number of units is larger. A detailed study started to work out the cost of the structure & assembly has been started with CEA & CIEMAT.

Analytical model (CIEMAT)

Coils
Conductor (Nb3Sn)
Conductor insulation (material+braiding)
End Spacers
raw material
machining
insulation
Wedges
raw material
machining
insulation
Interlayer insulation
Ground insulation (polyimide)
Winding
Procedure
Tooling
Winding poles
Winding Mandrel
Clampings
Infrastructure*
Winding machine
Curing
Material (binder agent)
Procedure
Tooling
Curing shell
Infrastructure*
Curing Press
Curing Furnace

Coils
Reaction
Material (Ar)
Procedure
Tooling
Reaction mould
Infrastructure*
Reaction furnace
Splicing procedure (current leads soldering)
Special tooling for transfer from reaction tooling to impregnation tooling
Impregnation
Material
Procedure
Tooling
Impregnation mould
Infrastructure*
Impregnation tank
Quench heaters (in case of using them)
Acceptance Tests
Electrical integrity to ground (spacers and poles)
Metrology of the finished coil (main dimensions)
Checking & Finishing
* Infrastructure will not be considered for the cost estimation

Structure support
Collar
Bladders
Aligment keys
Load Keys
Iron Pad
Masters
Yoke
raw material
machining
Shell
End plates
Axial rods

Cold Mass
He Vessel
Cryogenic lines
Bus Bars

Conductor J_c -fit

Fit for the target value of $J_c(4.2 \text{ K}, 16 \text{ T}) = 1500 \text{ A/mm}^2$

$$B_{c2}(T) = B_{c20} \cdot (1 - t^{1.52})$$

$$J_{c} = \frac{C(t)}{B_{p}} \cdot b^{0.5} \cdot (1 - b)^{2}$$

$$C(t) = C_{0} \cdot (1 - t^{1.52})^{\alpha} \cdot (1 - t^{2})^{\alpha}$$

Where: $t = \frac{T}{T_{c0}}$; $b = \frac{B_p}{B_{c2}(t)}$

with B_p peak field on the conductor

 $T_{c0} = 16 \text{ K}$, $B_{c20} = 29.4 \text{ T}$, $\alpha = 0.96$, $C_0 = 270 \text{ kA/mm}^2 \text{ T}$.

Cable degradation: 0%.

Conductor amount vs field @ 4.2 K

Conductor amount is very sensitive to the operational field and margin

Conductor mass in kt

kt	15 T	16 T
10%	8	10
15%	10	16
20%	16	>25

Conductor amount vs field @ 1.9 K

Conductor amount is sensitive to the operational field and margin

Conductor mass in kt

kt	15 T	16 T
10%	6	7
15%	8	9
20%	10	12

Elasticity of conductor mass (CEA)

- We can define a field elasticity as $E_{\rm m} = \frac{B}{m} \frac{dm}{dB}$
- An operational field of 14 T requires ~50% of the conductor required for 16 T

1% more field at 14 T cost 3.5% more mass of conductor.

1% more field at 16 T cost 7.5% more mass of conductor

Conductor composition

Evaluation for 10% margin at 4.2 K and ~18% margin at 1.9 K

Non-Cu and conductor mass in kt

kt	15 T	16 T
Non-Cu	3	4
Total	8	10

Constant integrated field

Target cost of conductor

- Discussion between mass and performance based cost is on-going
- Target performance is set to $J_c(4.2 \text{ K}, 16 \text{ T}) = 1500 \text{ A/mm}^2$
- Outer layers require larger Cu/non-Cu ratios than inner layers

Performance based cost c_p	Mass based cost c _m
$c_{\rm pt}$ = 5 EUR/kA.m at 4.2 K and 16 T	$c_{\rm mt}$ = 430 EUR/kg
$c_{\rm pp}$ = 10 EUR/kA.m at 4.2 K and 16 T	$c_{\rm mp}$ = 860 EUR/kg
$C_p = c_p \times J_c \times A_{SC} \times N \times L = c_m \times 2m_{SC}$	$C_{\rm m} = c_{\rm m} (A_{\rm SC} + A_{\rm Cu}) \times \rho \times N \times L = c_{\rm m} (m_{\rm SC} + m_{\rm Cu})$

J_{c} (4.2 K, 16 T) =1500 A/mm ²
A _{SC} & A _{Cu} : Total area of SC and Cu in conductor
$m_{\rm SC}$ & $m_{\rm Cu}$: Total mass of SC and Cu
<i>N</i> = 4578 units
L = 14.3 m : Length of per magnet unit
ρ = 8.7 kg/dm ³

We will then multiply these numbers by 1.3 to account for waste & testing

Conductor cost for FCC-hh dipoles

Target cost

Total cost of conductor	15 T [MEUR]	16 T [MEUR]
C _{mt} with 430 EUR/kg	4,500	5,600
$C_{\rm pt}$ with 5 EUR/kA.m	3,400	4,500

Pessimistic cost

Total cost of conductor	15 T [MEUR]	16 T [MEUR]
C _{mp} with 860 EUR/kg	9,000	11,200
$C_{\rm pp}$ with 10 EUR/kA.m	6,800	9,000

Conductor amount vs aperture

- Increasing the aperture from 50 to 60 mm would increase the required conductor amount by ~13%
- This estimate coincides well with the approximate estimate:

$$A = (k^2 + 2kr_i)\phi^*, k = \frac{B_1\pi}{2\mu_0 J_{\text{eng sin }\phi}},$$

with $r_{\rm i} \approx 50\text{-}60$ mm (aperture); $J_{\rm eng} \approx 880$ A/mm² (equivalent average engineering current density), $B_{\rm 1} = 16$ T, $\phi = 60^{\circ}$

In terms of magnet cost this would represent a cost increase of approximately ~10%, i.e., the magnet cost increase is of the order of half of the aperture increase:

$$\Delta \text{Cost}$$
, $\% \approx \frac{1}{2} \Delta r_i$, $\%$ at around 50 mm and 16 T

Total cost of FCC-hh dipoles

- FCC with LHC magnet cost without conductor: 630 kEUR/unit x 4578 unit= 2900 MEUR
- Magnets at 4.2 K at 10% margin and at 1.9 K at ~18% margin have a similar cost
- The cost for 15 T magnets is given for 4883 units (constant integrated field)

Target cost

Total cost	15 T [MEUR]	16 T [MEUR]
C _{mt} with 430 EUR/kg	7,400	8,500
$C_{\rm pt}$ with 5 EUR/kA.m	6,300	7,400

Pessimistic cost

Total cost	15 T [MEUR]	16 T [MEUR]
C _{mp} with 860 EUR/kg	11,900	14,100
C _{pp} with 10 EUR/kA.m	9,700	11,900

Conclusion

Margin is very expensive

5% (15%->20%) margin at 1.9 K => 25% more conductor cost (~ 2 GEUR)

 The conductor cost represents more than half of the magnet cost: any effort shall be pursued to minimize this cost

