Susana Izquierdo Bermudez, Rafal Ortwein, Juan Carlos Perez, Etienne Rochepault, Nicolas Perey 11-05-2016

Overview of ERMC-RMM Magnet Technology Program

Acknowledgments: Bernardo Bordini, Paolo Ferracin, Friedrich Lackner, Ezio Todesco, Davide Tommasini, Daniel Schoerling,

- 1. Introduction
- 2. Electromagnetic design
- 3. Mechanical design
- 4. Engineering design
- 5. Main technical developments needed
- 6. Summary and next steps

1. Introduction

- 2. Electromagnetic design
- 3. Mechanical design
- 4. Engineering design
- 5. Main technical developments needed
- 6. Summary and next steps

1. Introduction: ERMC/RMM

ERMC/RMM : A two stages project

Stage 1 priorities:

- 1. Demonstrate the field
 - Design based on the "available" critical current density (~20% lower than FCC target at 18 T, 4.2 K)
 - As field quality is not an objective, profit from the use of an iron pole to decrease the ratio between the field in the aperture and in the coil to ~ 1
- 2. Study the mechanics

Stage 2 priorities:

- 1. Coil size \rightarrow Grading
 - Design based on the target FCC critical current density
 - High Field Nb₃Sn splice development needed
- 2. Field quality (b_n<10 units, including iron saturation)
 - Still, it will need to be accommodated within the same structure, changing only the collar pack assembly

1. Introduction

Stage 1 priorities:

- 1. Demonstrate the field
 - Design based on the "available" critical current density (~20% lower than FCC target at 18 T, 4.2 K)
 - As field quality is not an objective, profit from the use of an iron pole to decrease the ratio between the field in the aperture and in the coil to ~ 1
- 2. Study the mechanics

Stage 1 approach:

In order to optimise time and resources:

- ERMC double pancakes will be used at top/bottom RMM coils.
- Same structure for both magnets
 - Keeping the possibility of having two set of pads to optimize the stress distribution on the coil.

Details: https://indico.cern.ch/event/446669/

1. Introduction

Stage 2 priorities:

- 1. Coil size \rightarrow Grading
 - Design based on the target FCC critical current density
 - High Field Nb₃Sn splice development needed
- 2. Field quality ($b_n < 10$ units, including iron saturation)
 - Still, it will need to be accommodated within the same structure, changing only the collar pack assembly

KEY ISSUE: Development of Nb₃Sn High field internal splices

Strategy:

- Magnet design following FCC targets in terms of critical current density and field quality
- ERMC will be the base to test the coil technology development:
 - It should allow the test of a single pancake

- 1. Introduction
- 2. Electromagnetic design
- 3. Mechanical design
- 4. Engineering design
- 5. Main technical developments needed
- 6. Summary and next steps

Strand

- Strand diameter:
 - From **0.7** to **1.1 mm**
- Copper to superconductor > 1
 - Time margin for protection \geq 40 ms
- Strand critical current density:
 - ERMC/RMM non graded design: $T_{c0} = 16 \text{ K}, B_{c20} = 28.8 \text{ T},$ $C_0 = 255230 \text{ A/mm}^2\text{T},$ 5 % cabling degradation $J_c(4.2\text{K},16\text{T}) = 1287 \text{ A/mm}^2$ $J_c(4.2\text{K},18\text{T}) = 735 \text{ A/mm}^2$
 - ERMC/RMM graded design: (FCC Target)

 $T_{c0} = 16 \text{ K}, B_{c20} = 29.38 \text{ T},$ $C_0 = 267845 \text{ A/mm}^2\text{T},$ 0 % cabling degradation $J_c(4.2\text{K},16\text{T}) = 1507 \text{ A/mm}^2$ $J_c(4.2\text{K},18\text{T}) = 887 \text{ A/mm}^2$

Cable and Insulation

- Non-graded design
 - 1 mm strand x **40 strands** per cable (**FRESCA2**)
- Graded solutions
 - Many options have been explored, decision on what to build has not been taken yet → Align with EuroCirCol guidelines to accompany conductor developments needs.
- Cable insulation thickness = $150 \mu m$
 - **S2-glass/Mica** using 11 T development.
 - Parallel material development program to explore and identify enhanced solutions.

Magnet Cross Section

- Outer diameter of the iron yoke = 660 mm
- Same structure for ERMC and RMM
- Aperture
 - ERMC ~ 8 mm
 - RMM = 50 mm

Coil Field at $B_0 = 16 \text{ T}$

- ERMC
 - $B_p/B_o = 1.097$

• RMM • $B_p/B_o = 1.002$

Electromagnetic design – Non Graded

Electromagnetic design – Graded

MANY SOLUTIONS EXPLORED, BUT WE NEED TO THINK WHAT WE ACTUALLY WANT TO BUILD!

13

Electromagnetic design - Graded E. Rochepault

• In addition...parametric scan of the different parameters using analytical formulas to complement ROXIE optimization.

E. Rochepault

3D Magnetic Design

- Design guideline: peak field in the coil ends 1 T lower than in the straight section.
- Magnetic optimization to define:
 - Number of blocks in the coil ends.
 - Relative position of the coil blocks.
- Outcome of the study:
 - It is more efficient to increase the relative distance in between layers than introduce spacers within the same layer
 - With this approach we are able to avoid the use of coil end spacers

E. Rochepault Optimization on the magnetic structural components

Conductor unit length/coil = 220 m

16

- 1. Introduction
- 2. Electromagnetic design
- 3. Mechanical design
- 4. Engineering design
- 5. Main technical developments needed
- 6. Summary and next steps

Mechanical design – Structural components

Aim: Have an unique support structure for ERMC and RMM.

RMM non-graded – Loading Case 18 T

RMM - Graded

TARGET: To have a pressure on the pole > 2 MPa at 16 T central field

Peak stress during cool down 200 MPa

Remark: Max. SEQ non-graded version at 18 T is about the same that the maximum SEQ of the graded version at 16 T $_{20}$

Structural integrity

• Criteria: All the components should stay below yield limit up to a field of 20 T

The hardest task: stress in the pole at RT

Approach: go for a compromise in between magnetic and mechanical performance

	ARMCO	Titanium	Ti-ARMCO	ST430
0.2 % YS RT (MPa)	180	827		310
Saturation (T)	2.15			1.47
$(L_{43K}-L_{293K})/L_{293K}$	1.97e-3	1.74e-3		1.74e-3
I @ 16 T(kA)	11.450	11.886	11.550	11.617
Bp @ 16 T	16.00	16.47	16.23	16.12
Margin in the load line (%) $(1-I_{nom}/I_{ss})*100$	10.67	7.50	9.33	9.76

3D Mechanical Design

• We just started!

- 1. Introduction
- 2. Electromagnetic design
- 3. Mechanical design
- 4. Engineering design
- 5. Main technical developments needed
- 6. Summary and next steps

Coil CAD model

- Aim: start winding in January 2017 (Cold test end 2017)
- Detailed CAD model from ERMC coil type configuration is available.

- Next steps
 - CAD preliminary design for RMM coil type
 - Detailed design of the RMM-ERMC pole geometry:
 - Integration of instrumentation in the central coil (closed cavity) will be a nice challenge to overcome.
 - A good design in this region is critical.

Structure CAD model

- We have a "conceptual" CAD model of the structure
- Iteration on the bladder slots size and position on-going to optimize the assembly.
- Still...a lot of details to go through

- 1. Introduction
- 2. Electromagnetic design
- 3. Mechanical design
- 4. Engineering design
- 5. Main technical developments needed
- 6. Summary and next steps

• Each aperture is made out of 4 double pancakes

• Each pancake can be built with a double pancake for the high field region + 2 single pancakes for the low field

- Two possible options:
 - Winding + Reaction + Splicing + Impregnation
 - High field and low field are wound together and spliced after reaction
 - Winding + Reaction + Impregnation + Splicing
 - High field and low field are wound, reacted and impregnated independently, and they are spliced after impregnation

Winding of the high field double pancake (standard winding as in RMC&SMC)

29

1.2. Winding of the upper low field layer

1.3. Winding of the lower field block

Other technical challenges

- Winding
 - Based on the 11 T winding experience (0.7 mm x 40 strands cable, 60 mm aperture), wind-ability in cos-theta configuration for larger cables and smaller aperture should not be underestimated.
 - Coil ends in HD/FRESCA2 were not optimized in terms of field quality. A coil end optimization including the field quality variable might bring additional complexity that we will need to handle.
- Insulation
 - 11 T cable insulation development pushed forward the electrical integrity of the coil pack, but there is room for optimization.
- Impregnation
 - Parallel R&D to understand what are the best materials to put in our coils.

ERMC will allow to test the most promising ideas from the parallel R&D programs with a fast turn around time and enough flexibility.

- 1. Introduction
- 2. Electromagnetic design
- 3. Mechanical design
- 4. Engineering design
- 5. Main technical developments needed
- 6. Summary and next steps

Summary and next steps

- We have a stablished program to accompany the 16 T R&D needs in terms of magnet technology development.
- First step: Non graded design
 - 2D design and 3D magnetic design is done. 3D mechanical analysis just started.
 - Engineering design is on-going, with the aim of start winding by beginning 2017 (cold test of first ERMC end of 2017).
- The same structure can be used for a graded coil design with minor modifications. The main challenge is the development of the high field Nb_3Sn splice.

Additional Slides

Contents

Parametric study non-graded design

- 1. Margin on the load line
- 2. Copper to superconductor ratio
- 3. Strand diameter
- 4. Insulation thickness
- 5. Iron pole

Margin on the load line

- Number of turns need to reach 16 T @ 4.2 K with 10 % margin:
 - 132 turns assuming EuroCircol Critical Current Density and 5 % cabling degradation
 - 100 turns assuming minimum required for FCC

Iron pole

- $I_{nom} = 11862 \text{ A}$
- $B_0 = 16.00 \text{ T}$
- $B_p = 16.03 \text{ T}$

For more efficient graded coils, the additional field given by the iron pole will be less critical

- I = 11862 A
- $B_o = 15.55 \text{ T}$
- $B_p = 15.99 \text{ T}$
- To reach $B_0 = 16$ T with 10 % margin at 4.2 K
 - Additional number of turns = 24
 - $I_{nom} = 11016 \text{ A}$
 - $B_0 = 15.55 \text{ T}$
 - $B_p = 15.99 \text{ T}$ 39

Iron Pole

ROXIE 10.2

0.073

150

Copper to superconductor ratio

Copper to Supercondutor		1	0.8	0.6	
number of conductors		150	129	108	
coil area (per aperture)	mm^2	29843	25665	21487	
coil area (per coil)	mm ²	14922	12833	10744	
W _{eq}	mm	96.96	88.49	79.33	
operation parameters					
I _{nom}	А	11000	12200	13800	
J _{sc}	A/mm ²	700	699	703	
J _{cu}	A/mm ²	700	874	1171	
Jeng	A/mm ²	350	388	439	
J _{overall}	A/mm ²	221	245	277	
Stored energy density	MJ/mm ³	90.44	94.40	99.59	
Differential inductance at Inom (per aperture)	mH/m	42.07	30.67	21.14	

The case cu2sc = 1 does not correspond to the "reference case". Differences:

- Conductor insulation thickness = $200 \,\mu m$
- Different critical surface

Copper to superconductor ratio

		cu2sc = 1	cu2sc = 0.8	cu2sc = 0.6
Insulated cable energy density	(J/mm^3)	0.0904	0.0944	0.0996
Insulated cable current density	(A/mm^2)	221	245	277
MIITS available	(MA^2s)	53.62	46.93	38.82
MIITS consumed decay	(MA^2s)	32.47	49.21	28.56
Time left to quench	(ms)	175	119	54

42

Strand diameter

- Pros: In a block coil the magnet aperture and coil geometry are closely linked.
 Wider cable goes in the good direction for an efficient coil geometry, but it does not provide a significant improvement
- **Cons:** Wind-ability and Stability
 - FRESCA2 step back from 1.25 mm strand to 1 mm because the cable was declared "un-windable"

		d=1.1 mm	d=1 mm		
coil dimensions					
number of conductors		125	150		
coil area (per aperture)	mm^2	29565	29843		
coil area (per coil)	mm^2	14782	14922		
W _{ea}	mm	96.41	96.96		
operation parameters					
Inom	A	13310	11000		
Jsc	A/mm ²	700	700		
Jcu	A/mm ²	700	700		
Jeng	A/mm ²	350	350		
Joverall	A/mm ²	225	221		

No significant gain in terms of coil size

Insulation thickness

cu2sc = 1 $d_{strand} = 1 mm$

		t=0.15 mm	t=0.2 mm			
Coil dimensions						
number of conductors		147	150			
coil area (per aperture)	mm^2	27841	29843			
coil area (per coil)	mm^2	13920	14922			
W _{eq}	mm	92.97	96.96			
Current density						
Ι	А	11000	11000			
Jsc	A/mm ²	700	700			
Jcu	A/mm ²	700	700			
Jeng	A/mm^2	350	350			
Joverall	A/mm ²	232	221			

Interesting gain in terms of coil size

