an active target for radioactive beam physics

Emanuel POLLACCO IRFU/SPhN

Goal of talk:-

To describe a current project for an active target → target material is also that of the detector.

− Status → understanding & lack of it.

- To launch a possible interest in your participating in building an/the active target for ISOLDE and/or making use of ACTAR at ISOLDE.
- Direct me as I go!

Emanuel POLLACCO IRFU -ISOLDE Feb 4

For particle stopping inside MAYA, identification is given by the charge deposit and its Range :

Range $\propto E^2/MZ^2$

○ Angular resolution $\Delta \theta \approx \Delta x/R$ (0.6 deg for R=100m) (at all lengths)

Hervé Savajols & Thomas Roger – GANIL

Why an active target?

- Measure {d σ (Z,A,E)/d Ω } at low ejectile energies (Low Thresholds)
- High & Pure Luminosity (BeamXTarget)
 ~ 10⁵⁺²¹ cm⁻².sec⁻¹ → σ ~ 10-100µb
- Wide angular cover $(4\pi \rightarrow \pi)$
- Versatility in the experimental method.
- Active Target is not an all-round soln.
 Limited cover (B=0 Solenoid)
- ACTAR attempting a versatile soln.

Participants of the ACTAR R&D & Schedule & Budget

• FP6 program – 2005→2008 - ACTAR

- Physics
- Detector Physics & Electro-Mechanics
- Simulation
- FEE & DAQ
- Analysis of Active-Target data (MAYA)

• ACTAR and the FEE & DAQ – program GET

- Participants under:- Multi-lab - Multi-Project

A 4 year exercise: T0=Sept 2008

- Phase I -Two year R&D for the geometry, gas-amplification and FEE & DAQ with tests of pro-types/demonstrators
- Phase II Two year construction
- Budget
 - 30-35€/channel- System of 15kchannels (0.5M€). R&D and instrument included except Auxiliary Detectors. Material Cost/channel~11€
- MoU
 - By Mid 2009 (10March 2009)
 - To include other labs

Emanuel POLLACCO IRFU -ISOLDE Feb 4 GANIL / IRFU / CENBG CCLRC DARESBURY U. LIVERPOOL/ GSI U. SANTIAGO DE COMPOSTELA INP CRACOW

GANIL / IRFU / CENBG MSU/RIKEN

ACTAR are not alone to build a TPC for Nucl. Phys.

- MSU (US) Direct reaction & Astro & EoS
 AT-TPC
- CENBG (FR) (GANIL/SPIRAL2, RIKEN)) 2p & 3p decay
 2p-TPC
- FSU LSU (US) (FSU & MSU) (α,p), (p,p'),(d,p)... Astro
 ANASEN
- York University (Triumf) (α,p), (p,p')... Astro
 - TACTIC
- LBL (US)– Fission
 - FISSION-TPC
- Saclay (GSI/NUSTAR) (FR) Spallation
 - R3B-TPC
- Kyoto (RIKEN) Japan EoS
 - SAMURAI-TPC

Emanuel POLLACCO IRFU -ISOLDE Feb 4

Physics Program addressed:-

- Direct reaction program Active Target
 - Inverse Kinematics 10MeV>E_B > 5MeV.A
 - n → (d,p), p→(³He,d), (α,t) (S,J^π,Ex)
 - d \rightarrow (d, α) (np pairing)
 - Inel \rightarrow (p,p'), (α , α '), (d,d'), (EoS, β ,J^{π},Ex)
 - Charge Exchange \rightarrow (d,2p)
 - Low energy quasi-target recoil: Z, A, E_x , θ
 - Resonant scattering Active Target
 - Inverse Kinematics $E_B < 5 MeV.A$
 - (p,p) Elastic & Inelastic Resonant Scattering
 - (α, p) Inelastic resonant Scattering
 - Quasi-target recoil & beam-like Z, A, E_x , θ High rates
 - Radio Activity Active stopping volume
 - p, 2p, 3p ... decay or more exotic decay
 - High dynamic range low sequential events dead-time
- Induced Fission Active stopping volume
 - A(n,f) Fission fragments X-sections
 - Very high rates

Emanuel POLLACCO IRFU -ISOLDE Feb 4

- Shell evolution far from stability
- Giant resonances
- Matter density distribution
- Cluster structures
- Isobaric analogue states
- Nuclear astrophysics

Methods to cover an energy dynamic range & yield

Target Contribution to Engy Resolⁿ.

Ex. Energy resolution required

- 200keV is OK
- 100keV is the best
- 50kev is a dream

Solid Target •

- dE/dx for p in C_3H_6 (1.2mg/cm²) for 10²⁰ H₂
 - p=0.75MeV; ∆E = 620keV
 - p=1.00MeV; ∆E = 410keV
 - p=2.00MeV; ∆E = 230keV

- **Gas Target** (depth 30cm with 20cm active: $H_2 10^{21}$) Position resolution for the vertex 3mm p=0.75MeV: $AF = 2F^{1/21}$ ۲
 - - p=1.00MeV; ∆E = 15keV
 - p=2.00MeV; ∆E = 10keV
 - Resolution ΔE + (Det + Elect) + Kinematics + Analysis
 - DET $\Delta E/E \sim 0.5\%$ if range is **100mm**
 - Micromegas resolⁿ 1.5-2% for a single pad in P10 ... to explore.

Emanuel POLLACCO IRFU -ISOLDE Feb 4

UNALUES AS A IL

Target Contribution to Angular Resol.

Resolution required

- For the physics 2.0° is OK
 - 0.5° is V.good
- For energy correction Kinematics $dE/d\theta$

 $\Delta \theta = 1$ is poor to OK $\Delta \theta = 0.3^{\circ}$ is V. good

Solid Target

- dE/dx for p in C_3H_6 (1.2mg/cm²) for $10^{20} H_2$
 - p=0.75MeV; Δθ = 5°
 - p=1.00MeV; Δθ = 4°
 - p=2.00MeV; Δθ = 2°
- Resolution $\Delta \theta$ + Det (0.3°)

Gas Target

- Position resolution for the vertex 3mm Target $10^{E}21 H_{2}$
 - p=0.75MeV; Δθ = 0.6°
 - p=1.00MeV; Δθ = 0.5°
 - p=2.00MeV; Δθ = 0.2°
- Resolution $\Delta \theta$ + Det + Elect + Analysis
 - Det resoln 50 mm → 0.7° → vertex+det < 1°

Emanuel POLLACCO IRFU -ISOLDE Feb 4

CENBG 2-p decay TPC

△P(large) of mother nucleus → Deep TPC & Measure angle & Small energy p → Small pads

Life time "short"

Deep TPC & Large E
Small pads
High dynamic range in energy
Small dead-time

Small pads 1.5x1.5 mm² Work in progress High Rate TPC Few gbits/sec Work in progress

ToT Preamplifiers Work in progress Difficult to make Small µ-electronics

Emanuel Pollacco IRFU

The Fission TPC – Electronics Mounting

Study of Fission x-sections

The Fission TPC – Electronics Mounting

Study of Fission x-sections

Jeff Blackmon, LSU

¹⁸Ne(α ,p)²¹Na at CRC at Louvain-le-Neuve

- through 2 layers of silicon-strip detectors
- ➤ Resulting energy resolution not as good as one would like
- ➤Need measurements to lower E_{cm}
- > Statistical rates not accurate enough

e.g. ¹⁸Ne(α ,p)²¹Na)

 (α, p) with an active target

TACTIC

A. M. Laird, NIM A 573 (2007) 306.

- >-> TPC-like device
- ➤ Cross sections are small
- >-Need >> 10⁵ pps
- Region around beam is isolated from detector elements allowing high incident beam intensities
- Track of ejected particles is reconstructed from segmented anodes fed into flash ADCs

Radial Field Beam in 'Faraday-Cup'

For reference

Jeff Blackmon, LSU

ANASEN – FSU & LSU

- Blackmon et al. LSU
- (p,p), (p,p'), (a,p), (d,p) ...
- Active target (Extended drift-chamber)
- DSSD + CsI array 48 500 channels
- Beam FSU & MSU (re accelerated beams)
 - windowless
 - Beam Tracking MCP

For reference

Emanuel POLLACCO IRFU -ISOLDE Feb 4

Physics cases for active targets

C. Monrozeau et al., Phys. Rev. Lett. 100, 042501 (2008)

MAYA target-detector

ActarSim http://www.usc.es/genp/

A Geant4+ROOT simulation tool

- Stores position and energy deposited for each track
- Calculates drift and diffusion of electronic clouds
- Calculates induction in the pads plane
- Uses pad signals for reconstruction
- Modular and configurable
 ⇒ test of geometry, gas parameters, amplification technology, reconstruction algorithms

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Tracking and reconstruction algorithms (T. Roger)

- Identification of track projection
- Method to measure drift velocity of electrons
- Range measurement from charge profile Threshold effects

Hyperbolic secant squared method

Next

・ロト・日・・日・・日・ うへぐ

Tracking and reconstruction algorithms (T. Roger)

- Identification of track projection
- Method to measure drift velocity of electrons
- Range measurement from charge profile Threshold effects

Angle measure should be improved by smaller pads. Note – <u>charge spread is smaller.</u> ResIn →? Tests & simulations to be done.

Orthogonal distance regression

Next

▲□▶▲□▶▲□▶▲□▶▲□ ● ●

Riccardo Raabe for the ACTAR Collaboration

Next

Tracking and reconstruction algorithms (T. Roger)

- Identification of track projection
- Method to measure drift velocity of electrons
- Range measurement from charge profile Threshold effects

Range measure should be improved by smaller pads. Note – <u>charge spread is smaller</u>. ResIn →? Tests & simulations to be done.

Amplification	(T. Zerguerras, D.Y. Pang)	Riccardo Raabe	
Collaboration	Physics	Developments	Next
O	00	○●○○	

Technology

90%He+10%CO2 95%He+5%CO2

600

400 p (torr) 800

DQC

100 + 0

200

Collaboration	Physics	Developments	Next

Technology

A possible Instrument Geometry For ACTAR

A possible Instrument Geometry

- 15,000 channels 2x2mm² pads (30,000 pads → 300mmx400mm)
- 760 Torr gas @ STP
 - p in H₂
 - 100mm→ 0.98MeV (1.25MeV)
 - 300mm→ 1.80MeV
 - He in He
 - 100mm→ 3.1MeV (4.8MeV)
 - 300mm→ 6.5MeV
- Full Si Telescope cover
 - 1200cm² → 12 MUST2
 - $800 \text{ cm}^2 \rightarrow 8 \text{ MUST2}$
 - MUST2 → DSSD+Si(Li)+CsI
- Efficiency of such a device
 - Solid angle cover
 - ~30% Poor
 - Dynamic Range

lrfu

- 0.1(300Torr) 100MeV p V.Good
- X-section simulations

Simulation:: an Overview

The conditions:

The reaction: d(⁷⁸Ni,⁷⁹Ni)p at 10A MeV.

 θ_{CM} angle coverage: from 2 to 70 degrees with steps of 2 degrees.

((口)(同)(臣)(臣) 臣)の(で

Simulation:: Efficiency:: Definition

For a first approximation, the efficiency of detecting protons is:

- For a proton stopped in the gas, it is effective if:
 - its projected range length in gas is larger than 3 cm,
 - 2 its θ_{Lab} angle relative to the beam line in the Lab system is larger than 5° (to avoid the beam).
- For protons escaping the gas chamber:
 - its residual energy (energy at reaction vertex energy loss in gas) is larger than 500 keV,
 - 2 its energy loss per centimeter along its path projection on pad plane is larger than 1 keV, and
 - 3 its θ_{Lab} angle relative to the beam line in the Lab system is larger than 5°.

▲□▶ ▲□▶ ▲■▶ ▲■▶ ▲■ めぬゆ

Simulation:: Efficiency:: Results

At larger angles, the efficiency only depends on the geometry $(\Rightarrow change the geometry?)$.

→ higher efficiency

ActarSim report (Spain, 2008)

Different Conditions to improve Data & Efficiency

- Gas Choice
 - $iC_{3}H_{6}$, H_{2} , ⁴He, ³He, D_{2} ...
 - Contaminants (C or C & O, or C & F)
 - Drift Time (Counting rates)
- $P \propto \rho$. T
 - Temperature, T \square not evaluated $v_d n$, $\sigma_x \square$,
 - Pressure, P \neg not evaluated $v_d \lor$, $\sigma_x \lor$, $\lor \nearrow$,
- Reaching high efficiency by employing different set-ups with or without an active target for different phase space cover
 Simulations

Physics cases for active targets Difficult Reactions – p transfer

- Physics shifting of the π shells as a fn of v number
- Example:-⁷⁰Ni(³He,t)⁷¹Cu or ⁷⁸Ni(³He,t)⁷⁹Cu
- X-section can be high (1-10mb/sr)
- For (³He,d)
 - good L-value signature
 - (³He,d) Form-Factor understood I do not think (α ,t) is well understood.

General Electronics for Time projection chambers GET

Multi-Project for IRFU/SPhN, GANIL, GSI, Compostel, CENBG, NSCL/MSU, Darsebury, York

2

Emanuel Pollacco Liverpool ACTAR Dec 2008

Multi-Project & Multi-Laboratory

- 1. ACTAR
 - Active Target
 - Saclay & GANIL & Darsebury, Compostel, GSI, York ...
- 2. 2p TPC
 - Particle decay
 - CENBG
- 3. AT-TPC
 - Fragmentation (π^+,π^-) & Active-Target *Magnet*
 - MSU
- 4. R3B-TPC
 - Heavy projectile fragmentation Magnet
 - Saclay & R3B collaboration
- 5. SAMURAI-TPC
 - Fragmentation (π^+,π^-) *Magnet*
 - Riken, Kyoto University, ...

Emanuel Pollacco Liverpool ACTAR Dec 2008

œ

saclav

Multi-Project & Multi-Laboratory

FP6 – ACTAR program Physics – Yellow Book Detector Simulations Gases & Gas Amplification tests Electronic system studies

Medium Sized System Multiple Applications Modular/Scale-Free Very High Dynamic Range High through-put for low occupation events Nucl. Phys. Based

Principle element of the project (phase I) To draw a detailed Conceptual Design, Build & Test a prototype for general nuclear physics TPCs electronics. System will be an assessment standard for medium size and high throughput system for Nucl. Phys.

irfu œ

saclav

GET A Simple Architecture To Give

Scale 'Free' Modular Portable - different labs Automated

Emanuel POLLACCO IRFU -ISOLDE Feb 4

TRIGGER

Numeric (LE Disc) Level 0 - External Level 1-Pad Multiplicity Level 2 – Event Topology

Calculated read pattern (Selective read-out)

15 GeV/c p-Pb (# 20K events) FE electronics validated on 1728 channels

SEDI/IRFU

lrfu

HARP test set-up at CERN (oct 07)

Generic Aspects via Slow Control

Gains & Losses with an Active Target

- X3 to X10 in luminosity
- Very low PI thresholds to 0.1 MeV
- E<E_T ~ Efficiency 90% for low energy E_T ejectile.
- Energy resolⁿ < 50keV</p>
- For Z=1 & 2, mass & charge resolⁿ for <ET.</p>
- Angular resolⁿ = 0.5°
- Nouvelle method → Nouvelle discoveries!
- Instrument adoptable to a number of techniques

- Limited max. energy 2 MeV.A within the TPC.
- Coupling MUST2
- No Gamma coincidence
- \bigcirc E>E_T ~ Efficiency 30%
- Complex Front End Electronics
- e High data capture
- To develop data analysis techniques for Nucl. Phys

	MWPC	GEM	Micromegas
Rate capability	10^4Hz/mm^2	>5x10^5Hz/mm^2	10^6Hz/mm^2
Gain	High 10^6	low 10^3 (single) > 10^5 (multi GEM)	High > 10^5
Gain stability	Drops at 10^4Hz/mm^2	Stable over 5*10^5Hz/mm^2	Stable over 10^6Hz/mm^2
2D Readout ?	Not really	Yes and flexible	Yes and flexible
Position resolution	> 200 µm (analog)	50 µm (analog)	Good < 80 µm
Time resolution	~ 100 µs	< 100 ns	< 100 ns
Magnetic Field effect	High	Low	Low
Cost	Expensive, fragile	Cheap, robust	Cheap, robustition

Emanuel POLLACCO IRFU -ISOLDE Feb 4