

Recent Highlights from the LHC

U. Oviedo (Spain)
on behalf of the **ATLAS, CMS, and LHCb**collaborations

QCD@LHC 2016 22 - 26 August 2016, Zurich, Switzerland

ATLAS EXPERIMENT

Outline

- LHC performance in 2016
- CMS and ATLAS: around 70 new results prepared in each case for summer conferences.
 - Searches for BSM physics, Supersymmetry and Exotica: exploring the new energy domain
 - Standard Model measurements: exploiting the sophistication of the detectors and exploring deeper the complexity of the Standard Model.
 - Higgs boson
 - **SM measurements: EWK** and **top-quark** related measurements
- CMS results: http://cms-results/public-results/preliminary-results/ICHEP-2016.html
- ATLAS results: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/Summer2016-13TeV
- LHCb: New probes of CP violation.
- LHCb results: http://lhcb.web.cern.ch/lhcb/
- Results at 13 TeV with 2016 dataset and some with 2015 dataset.
 - ATLAS and CMS have already recorded about 5 times more data in 2016 than in 2015.

LHC Peak luminosity

Reasonably quick ramp-up in number of bunches

- Limited by SPS beam dump to ~2100
- Electron cloud still very much with us but effects under control
- Reduced beta* and lower transverse beam sizes from the injectors compensating the lower number of bunches

3

Design luminosity reached

Lower emittance from injectors

LHCb and ALICE: levelled operation at ~3x10³² and ~2x10³⁰ cm⁻²s⁻¹ respectively

LHC: Luminosity lifetime/Availability/Prospects

Excellent luminosity lifetime – main component - proton loss to inelastic collisions in ATLAS, CMS and LHCb

Good peak luminosity, excellent luminosity lifetime

Stunning availability
Sustained effort from hardware
groups

- Peak luminosity limited to ~1.7e34 by inner triplets
- ~40 fb⁻¹/year in 2017 and 2018
- Prepare for HL-LHC and post-LS2 LIU era
- Prepare for 7 TeV operation

Integrated luminosity

LHC is enjoying the benefits of the decades long international design, construction, installation effort – foundations are good

Huge amount of experience & understanding gained and fed-forward

Progress represents a phenomenal ongoing effort by all the teams involved.

Still margin for improvement in Run 2

ATLAS data samples

Exceptional LHC performance in 2016 following 13 TeV commissioning in 2015 (2015: 4.2 fb⁻¹ delivered, 3.9 fb⁻¹ collected)

Results reported with 3-15 fb⁻¹

Total Integrated Luminosity [fb-

Pileup often above LHC design in 2016

Luminosity uncertainty

±2.1% (2015)

±3.7% (2016, preliminary)

±2.9% (2015+2016, prel)

Delivered Luminosity [pb⁻¹/0.1]

ATLAS trigger

Complex trigger menu designed to meet varied physics, monitoring and performance requirements

- ~2000 active menu items
- Stable main primary triggers
- Level-1 running at ~85 kHz
- Average physics output rate~1kHz

A few, example, trigger thresholds (GeV)

- $E_{\tau}(e) > 24-26$
- $p_{\tau}(\mu) > 24-26$
- $E_{\tau}^{\text{miss}} > 90-110$
- $E_{\tau}(\text{jet}) > 380$
- $E_{\tau}(\gamma) > 140$
- $p_{\tau}(\mu 1, \mu 2) > 6,6 + \text{topo/mass selections}$
- $E_{\tau}(\gamma 1, \gamma 2) > 35,25$

CMS:High luminosity

-> High Pileup

CMS livetime ~95% and > 94% of logged data usable for any physics analysis

Dealing with Pileup close or above 40 is a challenge!

CMS: Trigger upgrade performance

CMS: Physics Objects Performance

12.9 fb⁻¹ (13 TeV)

Z→ee

barrel

m_{yy} (GeV)

12.9 fb⁻¹ (13 TeV)

Z→ee

m,, (GeV)

barrel-endcap

Data

 $DY \rightarrow ee$

Top and Electroweak measurements:

Constraining the **SM**

- ➤ Test self-consistency of the SM, and the stability of the EW vacuum.
- The Higgs/symmetry breaking sector can be explored with more insights coming from top physics

$$V(\phi) = - \mu^2 \phi^+ \phi + \lambda (\phi^+ \phi)^2 + Y^{ij} \psi_L^i \psi_R^j \phi$$

 λ now known at NNLO QCD. Vacuum metastability when the minimum of V(Φ) is just local

- Background to searches
- Test of gauge structure in the EW sector, New physics in couplings?

August 2016

QCD@LHC 2016, Zurich

12

Top and Electroweak measurements

LHC: a Top quark factory

ATLAS and CMS 7 TeV

ATLAS and CMS 8TeV

ATLAS and CMS 13 TeV

Precision of measuremet comparable to theory precision LHC and Tevatron results consistent and in agreement with NNLO+NNLL

Top quark: Inclusive and differential cross-sections

LHC and Tevatron results consistent and in agreement with NNLO+NNLL over a large range of centre-of-mass energies

Top quark: Inclusive and differential cross-sections

CMS, 2.5fb⁻¹,13TeV, all-jets, differential pT Resolved & boosted, CMS-PAS-TOP-16-013

CMS, 2.5fb⁻¹,13TeV, l+jets, differential pT CMS-PAS-TOP-16-008

CMS, 2.2fb⁻¹,13TeV, dilep, differential pT(t), y(t), y(tt),m(tt), $\Delta\Phi$ (tt), CMS-PAS-TOP-16-007

Similar trends as in 8TeV. Top pT modelled too hard (improves with NNLO pQCD)

ATLAS, 3.2fb⁻¹,13TeV, l+jets, differential pT Resolved & boosted, ATLAS-CONF-2016-040 n(jets) in dileptons: ATLAS-CONF-2015-065 CMS, 2.3fb⁻¹,13TeV, dilep, ttbb, ttjj CMS-PAS-TOP-16-010

Top quark: other measurements

tt-Z coupling Important backgrounds

$$\sigma(ttZ) = 0.70 + 0.16-0.15 + 0.14-0.12 \text{ pb}$$

 $\sigma(ttW) = 0.98 + 0.23-0.22 + 0.22-0.18 \text{ pb}$

 $(\rightarrow ttW: 3.9\sigma, ttZ: 4.6\sigma)$

CMS ttZ and ttW

CMS, 12.9 fb⁻¹, 13TeV, ttZ, ttW, **CMS-PAS-TOP-16-017**

ATLAS 13TeV, Wt-channel

Binned profile LLH, on BDT, $\sigma(Wt) = 94 \pm 10 + 28 - 23 \text{ pb}$

ATLAS, 3.2fb-1, 13 TeV, Wt-channel., **ATLAS-CONF-2016-065**

CMS + ATLAS m_{top}

LHCtopWG precision of 0.3%

Indirect measurements of m_t^{pole} compatible with measured m_t^{MC} within precision of ± 2 GeV

W and Z at 13TeV

ATLAS, 81 pb⁻¹, 13TeV, W, Z, W+/W-, W/Z Phys. Lett. B 759 (2016) 601

LHCb, 294 pb⁻¹, 13TeV, Forward Z 2.0 < $|\eta|$ < 4.5 Φ *, ZpT, y(Z) arXiv:1607.06495 σ (Z->II) = 194.3±0.9±3.3±7.6 pb

CMS, 2.8 fb⁻¹, 13TeV, m(Z) CMS-PAS-SMP-16-009

19

LHCb has measured the cross-section for the process pp \rightarrow bbX at both 7 and 13 TeV centre-of-mass energies, in the pseudorapidity range 2 < η < 5

The measurement is made using semileptonic decays of b-hadrons

The ratio of 13 to 7 TeV cross-sections appears to depart from FONLL theory predictions at low η , further theoretical progress needed

Multi Boson production: WW -> Ivlv

- Signal selection
 - Opposite-sign high-pT isolated leptons (ee, μμ, eμ)
 - Missing transverse energy (reduce Drell-Yan)
 - Jet veto (reduce ttbar), (outside the mZ mass window, if of same flavour), jet btagging. Fither jet

ATLAS 20.3 fb⁻¹, 8TeV, WW, **arXiv:1603.01702**, **arXiv:1608.03086** (W⁺W⁻ production in association with one jet)

CMS 19.7fb⁻¹, 8TeV, WW, EPJC 76 (2016) 401

- window, if of same flavour). jet btagging. Either jet veto or 0 1 jet categorization.
- Background, total 15 30%,
 - Mainly ttbar / tW, W/Z+jets (measured with data), DY with MC normalized to data
 - W+jets: Control region with one nominal lepton and one loose lepton, crucial for HWW
 - Top: Jet multiplicity distribution in ttbar control region (using b-tagged jets)
 - WZ, ZZ and VVV are estimated from simulation
- Excess in early cross section measurements from both ATLAS and CMS has triggered a lot of theory papers about the NNLO calculations and further investigation on resummation effects at large logs
- This measurement attracted a lot of attention

Multi Boson production: WW -> Ivlv

ATLAS: arXiv:1603.01702

Cross section measurement uncertainty is ~8.5 % Dominant theory uncertainty in eµ comes from jet veto (3.4%), parton shower, hadronisation and underlyingevent uncertainties (2.5%)

The combined total cross section is compatible with NNLO within 1.4 σ

ATLAS: arXiv:1608.03086 (W+W-production in association with one jet)

Extend the previous measurement to 1-jet final states. In combination with previous result provide a WW+≤ 1 jet fiducial cross section with reduced logarithmic dependence

The result on total cross section is 12% more precise than the previous ATLAS measurement

based on WW+ojet

CMS: EPJC 76 (2016) 401:

Events with same-flavor and different-flavor lepton pair, with o and 1 associated jets, are used to measure the inclusive cross section.

p_T^{WW}-resummed calculation used for extrapolation to the full Wboson decay phase space.

 σ = 60.1 ± 0.9 (stat) ± 3.2 (exp) ± 3.1 (theo) ± 1.6 (lumi) pb SM NNLO prediction: 59.8^{+1.3}_{-1.1} pb

Shapes of the measured unfolded differential distributions agree with the predictions at the level of 15%

Multi Boson production, 13 TeV

contribution from non-prompt background. $\sigma(pp \to WZ) = 39.9 \pm 3.2 \, (stat)^{+2.9}_{-3.1} \, (syst)$

 \pm 0.4 (theo) \pm 1.3 (lumi) pb.

SM NNLO prediction: 50.0+1.1-1.0 pb

CMS, 2.3fb-1, 13TeV, WW, e μ +0/1jet σ (WW) = 115.3 ± 10.9 pb (\leftrightarrow NNLO: 120±3±2pb) (w/o H \rightarrow WW) CMS PAS-SMP-16-006

ATLAS , 3.2fb-1, 13TeV, WW, e μ , 0 jet $\sigma(WW)$ = 142 ±5±13±3 pb (\leftrightarrow NNLO: 128 ± 4pb) ATLAS-CONF-2016-090

- Both coll: WW cross section at 13 TeV, with 10% precision, sys. limited, consistent with NNLO
- Both coll: ZZ cross section with 14% precision, statistically limited, consistent with NNLO (and NLO), CMS also Z->4l
- WZ ->3Inu results submitted to journal, ATLAS is compatible with the very recently calculated large NNLO corrections, while CMS below.
- Good agreement in general between measurements and recent NNLO predictions at both 8/13 TeV
- No deviations from SM observed in the search for Anomalous Triple Gauge
- Couplings, limits start to surpass LEP results

Atlas summary on top and EWK results

August 2016 QCD@LHC 2016, Zurich 24

CP Violation at LHCb – Λ_b Decays

In the flavour sector, LHCb is, among many other measurements, probing CP violation in new processes

First evidence for CP violation in $\Lambda_b \rightarrow p\pi$ - π + π -

 Searching for local CP-violating effects in Λ_b →pπ-π+π-decays as a function of the relative orientation between the decay planes formed by the pπ- and π+π- systems (Φ)

- Evidence is found for CP violation at the 3.3σ level
- First evidence of CP violation in the baryon sector

LHCb-PAPER-2016-030 in preparation

Search for CP Violation in Charm Decays

CP violation in the charm sector is expected to be very small in the SM, but can be enhanced by new physics

- Most precise measurement of $A_{CP}(D^{\circ} \rightarrow K^{+}K^{-})$

$$\frac{N(D^0 \to f) - N(\overline{D}^0 \to \overline{f})}{N(D^0 \to f) + N(\overline{D}^0 \to \overline{f})} \quad \text{with } f = K^+K^-$$

Flavour of D° is tagged using the π^{\pm} charge from D*+ \rightarrow D°(K+K-) π^{+} decays

$$A_{CP}(K^-K^+) = (0.14 \pm 0.15 \, (\text{stat}) \pm 0.10 \, (\text{syst}))\%$$

Combining this with a previous LHCb result using muon charge in semileptonic $B \rightarrow D\mu X$ decays as a tag, the most precise CP violation measurement from a charm meson decay from an individual experiment is obtained:

$$A_{CP}(K^-K^+) = (0.04 \pm 0.12 \text{ (stat)} \pm 0.10 \text{ (syst)})\%$$

HIGGS H(125) physics

- Higgs boson at 125 GeV has opened up as many questions as it has answered
- Run-1: Discovery!
 - its mass has been measured with high precision (±0.2%) Phys. Rev. Lett. 114,
 191803
 - Its spin-parity
 - production via gluon-fusion, vector-boson fusion, and associated with a W or Z, arXiv:1606.02266
 - decays to γγ, WW, ZZ, and the fermionic decay to ττ
- In Run-2: Consolidation and full study of its properties.
 - Establish and measure at 13 TeV: H->ZZ->4l (CMS-PAS-HIG-16-033, ATLAS-CONF-2016-079), H-> γγ (CMS-PAS-HIG-16-020, ATLAS-CONF-2016-067), H->WW (CMS-PAS-HIG-16-023), ATLAS combination (ATLAS-CONF-2016-081)
 - Search for ttH production to probe ttH vertex directly (ATLAS-CONF-2016-080, ATLAS-CONF-2016-058, ATLAS-CONF-2016-068, CMS-PAS-HIG-16-022, CMS-PAS-HIG-16-004)
 - Search for H → bb decays (CMS-PAS-HIG-16-003, ATLAS-CONF-2016-091, 063)
 - Search for rare decays
 - Refine measurements of couplings (including HH), mass, etc.
 - Expand use of H as a tool to find new physics (e.g. portal to Dark Matter)
 August 2016
 QCD@LHC 2016, Zurich

Individual channels: H-> bosons

The original "discovery channels", updated to full run 1 luminosity, final and published

Individual channels: H-> fermions

Individual channels: ttH Directly probing the largest H coupling

Individual channels: production/decay mode

The BEH scalar (H(125))

Fitting the 5 main tree level coupling modifiers + κ_{μ} and resolving all the loops (BR_{BSM} =0).

 m_{H} = 125.09 ± 0.24 GeV= 125.09 ± 0.21 (stat) ± 0.11 (syst) GeV $\Delta m_{H}/m_{H}$ =0.2%

All vector and fermion couplings scaled by κ_V and κ_F

A scalar, beyond "reasonable" doubts

γγ, WW, ZZ modes

100

ATLAS and CMS exclude non-SM spin-o models and spin-2 models with >99.9 % C.L.

constraints on non-SM contributions to the tensor structure of HVV coupling in $S^{CP}=0^+$ (parameterised as K_{HZZ}/K_{SM} , K_{AZZ}/K_{SM} ·tan α (ATLAS) resp. Λ , a_1 , a_1 (CMS)

Alternatives tested: 0[±], 1[±] and 2[±]; Excluded at >99% CL

2.5 ∆ø [rad]

H(125) at 13 TeV

Many analyses in Run 2 follow closely the methods and strategies developed in Run 1

ggH (87.4%), 2.3 (σ_{13}/σ_{8}) **VBF** (7.1%) **VH** (4.9%) **ttH** (0.6%), 3.9 (σ_{13}/σ_{8}) **Backgrounds: tt** 3.3 (σ_{13}/σ_{8}) decay mode BR (%) H->**bb** 58.1 H->**ττ** 6.3 S/B<1 ΔM/M ~ 10-20%

H->**WW** 21.5 S/B<1, ΔM/M ~ 30% H->**ZZ** 2.6 S/B>>1, ΔM/M ~ 1-2% H->**γγ** 0.23 S/B<1, ΔM/M ~ 1-2%

Given the luminosities collected (and used for the results presented here), in 2015: ~3 fb⁻¹ and in 2016: ~13 fb⁻¹, there are more Higgs bosons already in Run 2 than in Run 1!

Higgs H(125) is re-discovered in the main decay channels used for the discovery at 7 and 8 TeV

Higgs->ZZ*

ATLAS-CONF-2016-079 CMS-PAS-HIG-16-033

All production modes targeted ggF, VBF, VH, ttH events

Kinematic discriminant, MZ1, MZ2, 5 angles from decay chain, matrix element, used to enhance the signal purity of different production modes

Dominant systematic uncertainty: luminosity and lepton SF

90 100 110 120 130 140 150 160 17

m₄₁ [GeV]

Fiducial cross-section measurements:

13 TeV	Fiducial σ (fb)	SM prediction (fb)
ATLAS (14.8 fb ⁻¹)	4.54+1.02-0.90	3.07+0.21-0.25
CMS (12.9 fb ⁻¹)	2.29+ ^{0.74} _{-0.64} (stat) ^{+0.30} _{-0.23} (syst)	2.53±0.13

Higgs->γγ

ATLAS-CONF-2016-067 CMS-PAS-HIG-16-020

Signal extracted through fit of $m_{\gamma\gamma}$ in different event categories

Main backgrounds: ³/₂
 γγ and γ-jet production

Dominant systematic uncertainty: photon energy scale and resolution and background choice bias

Fiducial cross-section measurements:

13 TeV	Fiducial σ (fb)	SM prediction (fb)
ATLAS (13.3 fb ⁻¹)	43.2±14.9(stat)±4.9(syst)	62.8 ^{+3.4} _{-4.4} (N ³ LO+XH)
CMS (12.9 fb ⁻¹)	69+16 ₋₂₂ (stat)+8 ₋₆ (syst)	73.8±3.8

... differential measurements in H-> γγ and H-> ZZ*

very useful to improve MC codes and reduce systematic uncertainties

.. combination of H-> $\gamma\gamma$ and H-> ZZ* (ATLAS-CONF-2016-081)

Combination of H->γγ and H->Z->4l inclusive samples, with no categorization

Higgs production is observed with 10σ significance (8.6 σ expected) with 13 TeV data in agreement with SM expectations

Precision already comparable to Run 1

	Measurement at 13 TeV	SM prediction at 13 TeV
σ (pb)	59.0 ^{+9.7} _{-9.2} (stat) ^{+4.4} _{-3.5} (syst)	55.5 ^{+2.4} . _{3.4}
μ	1.13+0.18-0.17	1

August 2016

ttH production (establish this mode at 13 TeV)

ATLAS-CONF-2016-080 CMS-PAS-HIG-16-004 CMS-PAS-HIG-16-022 ATLAS-CONF-2016-058

- Direct probe of top Yukawa coupling
- Cross-section at 13 TeV ~4 times that at 8 TeV
- Results with 2015,2016 data for:
 - ttH, H→bb: categorize events according to amount of leptons, jets, bjets, main background tt+heavy flavour production
 - ATLAS uses BDT to reconstruct Higgs and separate signal and background for each category
 - CMS includes now a boosted category and 2D matrix-element and BDT
 - Dominant systematic uncertainty: signal and background modeling and normalization
 - ttH, multilepton final states H-> WW, ZZ, ττ
 - 2-4 leptons, 2 or more jets, and at least 1 b-tagged jet. Allows at least one τ_{had}
 - ATLAS cut and count analysis in main different category regions
 - CMS BDT based discriminants including matrix element weights
 - Dominant systematic uncertainty: fake-rate measurements and non-prompt background estimates
 - ttH, $H \rightarrow \gamma \gamma$ through $H \rightarrow \gamma \gamma$ event categorisation

ttH production

ATLAS-CONF-2016-080, 058, 068 CMS-PAS-HIG-16-004, 022

ATLAS ttH combination, $\mu=1.8\pm0.7$

Searches: SUSY and Exotica

Major extension of reach compared to Run-1, and they probe well into the TeV, and even multi-TeV, mass scale range

Main motivations to look for SUSY remain after run 1 results,

- Hierarchy problem (low-mass top squarks may cancel SM contributions to mH),
- lightest SUSY particle can be stable, weekly interacting and massive (DM candidate),
 Big Questions
- unification of gauge couplings
- Exotica:
- Many Big
 Questions beyond
 the SM to be
 answered at TeV
 scale
- Big Ideas highly constrained from theory and observed phenomena

SUSY in run 2 at 13 TeV

- Substantially higher cross sections w.r.t. 7/8 TeV in Run1
 - in particular for gluon-gluon processes
 - most important gain for the highest masses
 - For many SUSY searches higher than for dominant SM backgrounds (W/Z+jets, tt)

three main scenarios

R-parity conserving (lightest SUSY particle= $\tilde{\chi}_{1}^{0}$)

- provides DM candidate
- "classical" SUSY signatures with high missing ET (MET)
- strong or electroweak production

R-parity violating, different LSPs

- couplings strongly constrained (proton stability)
- loose MET handle for bkg reduction
- alternative signatures like high jet multiplicity

Gauge mediated SUSY breaking

- decay chains terminate with (low-mass, invisible)
- Typical signature: MET+ \tilde{G} photons or Zs from last decay step

Focus on specific signatures, simplified models guide optimisation

Data-driven backgrounds: multiple control regions to constrain MC predictions and systematic uncertainties

Validation regions: verify background descriptions

Signal regions: sensitivity!

Gluino decays to qq/bb/tt+LSP

CMS-SUS-16-014, 015, 016, ATLAS-CONF-2016-078, 052, 037

• Gluinos: highest SUSY production cross section, give access to other sparticles

via decay chains

 2-6 jets and veto isolated leptons

- Total of 30 signal regions with different m_{eff} (m_{eff} = $E_T^{miss} + \Sigma |pT(jet)|$) cuts
- Main backgrounds
 Z/W+jets and tt
- Sensitive to g and q production
- Largest excess 1.6σ
- No significant excesses overall

Gluino decays to qq/bb/tt+LSP

CMS-SUS-16-014, 015, 016, ATLAS-CONF-2016-078, 052, 037

- Hadronic search
- key variables: $M_{T_{2,}}$ or missing H_{T} , binned in #jets, #b-jets, H_{T} .

Jet multiplicity for a

Gluino production / chargino

CMS-SUS-16-014, 019, 020, 022, ATLAS-CONF-2016-078, 054, 037

Decay chains in gluino production via a chargino and a W*

- Single lepton search
 - 1 lepton, jets, no b-jets
 - HT, MET, W pT, $\Delta \phi$ (W,lepton)

Same-sign dileptons

- small SM backgrounds (multi-boson, fake leptons, charge flip)
- binned in pT(l),mT, MET,HT, #jets

August 2016

Top squarks Low-mass top squarks required for natural models

CMS-SUS-16-029, 025 ATLAS-CONF-2016-050

- favored decay via t(*) and LSP: final states classified according to W decay mode
 - Event topology: WbWb+MET (ol, 1l, 2l, τ)
 - approaches SM tt signature for Δm≈m(t) and low LSP mass
- if chargino is accessible: alternative decay to b-chargino

CMS: Hadronic search

- optimizations for low and high Δm
- high Δm: using #jets, #b-jets, mT(b), and

MET; #tops and #Ws from jet substructure

ATLAS: 11, in total, 35 signal regions

- basic selection on jets, b-jets, MET
- Aiming to cover m(χ₁°) vs m(t) plane
- Largest excess 3.3σ

Top squarks

ATLAS summary

For $m(\chi_1^{\circ}) < 200$ GeV, m(t) < 800 GeV excluded except in rather small regions

Electroweak Production

CMS-SUS-16-024

Direct production of "electroweakino" pairs

- Decays via sleptons/sneutrinos
- Using benchmarks to illustrate different scenarios (depend on mixings and nature of lightest slepton)

Multilepton searches

- 3 (or 4) leptons (includes combinations with 1 or 2 hadronically decaying τ s)
- SRs binned in flavour&charge combination, MET, m(II)/pT(II)

Electroweak production: In flavor democratic scenario we exclude Chargino masses up to 1 TeV (previous Run1 limit was 750 GeV)

Exotica: Dark Matter Search

ATLAS/CMS searches assuming that DM is a WIMP

Collider Dark Matter Signature - Mono-X: ET miss +X a.k.a. Mono-X

- X from ISR jet, b, t, γ, W, Z
- X from mixing with mediator

DM interpretation using simplified model to avoid EFT validity concerns

Exotica: Dark Matter Search, Mono-jet/b-jets/top

Imbalanced transverse momentum ET miss Irreducible background: Z(vv)+jets

• jets might be mis-reconstructed as b-jets, γ, W, Z

CMS-PAS-EXO--16-037 ET miss +jet

CMS-PAS-EXO--16-040 ET miss +t

QCD@LHC 2016, Zurich

ATLAS-CONF-2016-050,076,077,086 CMS-PAS-EXO-16-005

ET miss +bb/tt

Exotica: Dark Matter Search, Mono-γ/W/Z/H

Dark Matter: Limits

Summary of all Dark Matter Searches in Run 2

Complementary searches by mong X and dijet

- Dijet searches cover a broad mediator mass range
- Results highly depend on choice of coupling parameters

 $g_q=0.25 g_{DM}=1$ $\mathcal{L}=g_q\bar{q}\gamma^\mu qZ'_\mu$

 $\mathcal{L} = g_q \bar{q} \gamma^{\mu} q Z'_{\mu}$ $g_q = 0.1 g_{DM} = 1.5$

Exotica: Search for resonances (Di-Lepton)

The state of the s

Same Flavor Opposite Sign (ee, μμ, ττ)

CMS-PAS-EXO--16-031, ATLAS-CONF-2016-045

Z'_{SSM} >4.05 TeV Z'_{SSM} (Run 1) >2.90 TeV

Same Sign (ee, μμ)

ATLAS-CONF-2016-051

 Z'_{SSM} (3% width) >4 TeV Z'_{Ψ} (0.5% width) >3.36 TeV

Lepton Flavor Violation (eμ, eτ, μτ)

CMS-PAS-EXO--16-001, ATLAS-CONF-2016-045

RPV $(\lambda_{311}^{1}=\lambda_{132}=\lambda_{231}=0.2) > 3.3 \text{ TeV}$ QBH (n=6)> 4.5 TeV

Exotica: Search for resonances (Di-jets)

The state of the s

Low mass search, HLT 'scouting',

High Mass search

Jet HLT info saved directly (CMS-Run1)

Background modeled by parametrized function for search

CMS-PAS-EXO--16-032, ATLAS-CONF-2016-069

	Observed (expected) mass limit [TeV]			
Model	Final	$12.9{ m fb}^{-1}$	$2.4{\rm fb}^{-1}$	$20\mathrm{fb}^{-1}$
	State	13 TeV	13 TeV	8 TeV
String	qg	7.4 (7.4)	7.0 (6.9)	5.0 (4.9)
Scalar diquark	qq	6.9 (6.8)	6.0(6.1)	4.7(4.4)
Axigluon/coloron	$q\overline{q}$	5.5 (5.6)	5.1 (5.1)	3.7 (3.9)
Excited quark	qg	5.4 (5.4)	5.0 (4.8)	3.5 (3.7)
Color-octet scalar ($k_s^2 = 1/2$)	gg	3.0 (3.3)	_	_
W'	$q\overline{q}$	2.7(3.1)	2.6 (2.3)	2.2 (2.2)
Z'	$q\overline{q}$	2.1 (2.3)	_	1.7 (1.8)
RS Graviton	$q\overline{q}$, gg	1.9 (1.8)	_	1.6 (1.3)

b* (BR(b*
$$\rightarrow$$
 bg)=0.85) >2.3 TeV
Z' >1.5TeV

Exotica: Search for resonances (Di-jets, summary)

A broad mass - leptophobic Z' coupling parameter space constrained by combining various dijet channels.

Diboson Resonance

- RS Graviton mass limit up to 2 TeV
- HVT W' mass limit up to 2.4 TeV
- a joint interpretation of VV/Vh channel

Exotica: Search for resonances (Di-photons)

Significant excesses observed in 2015 data

CMS: the small excess at 750 GeV remained there after reprocessing and final calibration (CMS choice to reprocess prior to publishing). Global significance of CMS 13 TeV(2015)+8 TeV was 1.6 σ

Localised excess seen in 2015 ATLAS data

- 2.1 σ global (3.9 σ local) significance at 750 GeV (spin-0 search), width ~50 GeV
- After reprocessing, new 2016 reconstruction 3.4 \rightarrow σ local, at ~730 GeV

QCD@LHC 2016, Zurich

Exotica: Search for resonances (2016 data) (Di-photons)

CMS: no evidence of strengthening of 2015 bump

ATLAS 2016 data: no clustering around 730-750 GeV, and 3.8x more data

- 2016 data consistent with 2015 at the
 2.7σ level
- Appears that the 2015 excess was a statistical fluctuation

Summary

- Very successful operation of the LHC and the experiments (enhanced detectors and trigger systems) in 2016.
- Exploration of the new energy regime of 13 TeV has started (detectors able to cope with PU levels close to twice the design)
- A broad scan of several different scenarios for physics beyond the standard model have been performed, e.g. in SUSY: mass limits up to about 1.9 TeV (gluinos) and 900 GeV (top squarks), and limits on EW production even for small mass differences
- Several measurements of Standard Model processes done, including various with low cross-sections. New 13TeV results confirm 8TeV results with already impressive precision
- New era in **Higgs precision physics**, Higgs re-discovered, **ttH**, H->bb
- New probes of CP violation from LHCb
- From this first look no significant deviation from the Standard model has been observed. Data in general compatible with SM predictions at higher orders in pQCD.
- The performance of the Accelerator complex at CERN makes us confident that it will be possible to exploit the full physics reach of the LHC.