QCD:

fixed order results

Fabrizio Caola, CERN

QCD@LHC 2016, Zurich, 22/08/2016

Many thanks to K. Melnikov and G. Salam for discussions on these topics

Disclaimer

- •In this talk, I will focus on recent progress in higher order SM computations for LHC processes, especially on the ones appeared after QCD@LHC2015
- Nevertheless, many other interesting "fixed order" progress, mostly relevant to precise extraction of input parameters
- Five-loop running of α_s [Baikov, Chetyrkin, Kühn (2016)]
- •DIS $(\rightarrow PDFs)$:
 - Heavy flavor → see Johannes' talk tomorrow
 - Di-jet production in DIS [Currie, Gehrmann, Niehues (2016)]
- •Implications of the $\overline{\rm MS}$ on-shell 4-loop relation for m_t
 - Comparison with all-order estimates/renormalons and its implication for the top-mass extraction [Beneke, Marquard, Nason, Steinhauser (2016)]
- Also, NLO BSM analysis are more and more frequent

Why fixed order calculations?

Today: many `tools" for hadron collider physics. Yet, fixed-order calculations have a crucial role for LHC precision phenomenology

- Well-defined, Very Solid Framework
 - Minimal assumptions, error estimate under reasonable control
- •QCD IS NOW (MOSTLY) A BEAST WE NEED TO TAME IF WE WANT TO PROFITABLY SEARCH FOR NEW PHYSICS AT THE LHC
 - Whenever possible: focus on high-scale observables (minimal NP contamination), simple analysis (clean exp./th. comparison)
 - In this regime, typically process is a multi-scale problem. However, no huge scale hierarchies → fixed (high enough) order predictions correctly capture all the relevant logs
 - F.O. can deal with REALISTIC OBSERVABLES / CUTS. Minimize (hidden) extrapolation errors

Fixed-order predictions: accuracy goals

A poster-child for precision phenomenology: the (high p_t) Z transverse momentum distribution (no jets, no missing energy...)

$m_{\ell\ell}$ [GeV]	12–20	20–30	30–46	46–66	66–116	116–150
				Str. Land		
$\sigma(Z/\gamma^* \to \ell^+\ell^-)$ [pb]	1.45	1.03	0.97	14.96	537.10	5.59
Statistical uncertainty [%]	0.63	0.75	0.83	0.17	0.03	0.31
Detector uncertainty [%]	0.84	0.99	0.87	1.05	0.40	0.56
Background uncertainty [%]	0.18	0.85	1.42	1.28	0.06	0.77
Model uncertainty [%]	1.84	2.24	2.27	0.89	0.19	0.50
Total systematic uncertainty [%]	2.06	2.44	2.38	1.82	0.45	1.03

ATLAS 8 TeV (+2.8% lumi)

CMS 8 TeV (+2.6% lumi)

PRECISION MEASUREMENTS
AT THE LHC:

FEW PERCENT (VERY HARD...)

"Few percent": the theory side

$$d\sigma = \int dx_1 dx_2 f(x_1) f(x_2) d\sigma_{\text{part}}(x_1, x_2) F_J(1 + \mathcal{O}(\Lambda_{\text{QCD}}/Q))$$

Input parameters: ~few percent. In principle improvable

NP effects: ~ few percent
No good control/understanding
of them at this level. LIMITING
FACTOR FOR FUTURE DEVELOPMENT

HARD SCATTERING MATRIX ELEMENT

- α_s ~ 0.1 \rightarrow For TYPICAL PROCESSES, we need NLO for ~ 10% and NNLO for ~ 1 % accuracy
- •Going beyond that is neither particularly useful (exp. precision) NOR POSSIBLE GIVEN OUR CURRENT UNDERSTANDING OF QCD, even if we knew how to compute multi-loop amplitudes and had N^KLO subtraction schemes (NP effects)

The elephant in the room

The obvious exception is HIGGS BOSON PRODUCTION

(gluon fusion: large color charge, typical correction $\sim \alpha_S C_A \sim 0.3$)

- •The calculation of N³LO corrections to Higgs boson production is truly one of the most amazing achievements in perturbative QCD in the recent past
- •The (big) challenge is now to promote the fully inclusive N³LO result to a fully exclusive calculation → realistic theory / experiment comparison at unprecedented level

see Bernhard's talk on Friday (also for $N^{(2,3)}LO\ VBF$) and Marco's talk this afternoon

NLO computations: status and recent progress

NLO computations: where we stand

Thanks to a very good understanding of one-loop amplitudes and to significant development in MC tools now

NLO IS THE STANDARD FOR LHC ANALYSIS

- •Many publicly available codes allow anyone to perform NLO analysis for reasonably arbitrary [~ 4 particles (~ 3 colored) in the final state] LHC processes: MADGRAPH5_AMC@NLO, OPENLOOPS(+SHERPA), GOSAM(+SHERPA), RECOLA, HELAC...
- •By default, they employ both unitarity-based (Cuttools, Samurai, Ninja...) and tensor reduction (Collier, Golem95, PJFRY, IREGI...)
- Some surprises from OPENLOOPS
 - Tensor reduction (COLLIER) is competitive with unitarity methods
 - Amplitudes are fast and stable in degenerate kinematics → NNLO [so far tested with color-singlet final states, would be interesting to study other cases]
- The next step for automation: NLO EW (basically there), arbitrary BSM

NLO computations: where we stand

Thanks to a very good understanding of one-loop amplitudes and to significant development in MC tools now

NLO IS THE STANDARD FOR LHC ANALYSIS

Dedicated codes allow for complicated final states, e.g.:

- V(V)+jets [BlackHat+Sherpa], jets [NJet+Sherpa], tt+jets [Höche et al. (2016)] \rightarrow also allow for interesting theoretical analysis (mult. ratios predictions...)
- •H+jets [GoSam+Sherpa]. Recently: up to 3-jets at LO with full top-mass dependence [Greiner et al. (2016)] → investigate the high-p_t Higgs spectrum
- •Off-shell effects in ttX processes: ttH [Denner and Feger (2015)], ttj [Bevilacqua et al. (2015) → see Heriberto's talk this afternoon]
 - These results, together with earlier results on single-top [Pittau (1996), Papanastasiou et al. (2013)] allow to test the NWA
 - So far, NWA works exactly as expected: Γ_t/m_t suppression in inclusive observables, large corrections only after kinematics edges and for M_{Wb} sensitive observables \rightarrow important consequences for NNLO

NLO: loop-induced processes

In the past year, significant progress for loop-induced processes

- •Relevant examples: Higgs p_t , $gg \rightarrow VV$ (especially after $qq \rightarrow VV@NNLO$), $gg \rightarrow VH$ (especially after qq@NNLO), di-Higgs...
- Despite being loop-suppressed, the large gluon flux makes the yield for these processes sizable
- gluon-fusion processes → expect large corrections
- At NLO simple infrared structure, but virtual corrections require complicated two-loop amplitudes
- Real emission: one-loop multi-leg, in principle achievable with 1-loop tools

A small detour: loop amplitudes

Computation of loop-amplitudes in two steps:

- 1. reduce all the integrals of your amplitudes to a minimal set of independent `master' integrals
- 2. compute the independent integrals

At one-loop:

- independent integrals are always the same (box, tri., bub., tadpoles)
- only (1) is an issue. Very well-understood (tensor reduction, unitarity...)

$$A_n^{\text{1-loop}} = \sum_i d_i + \sum_i c_i$$

$$+\sum_{i}b_{i}$$
 (ε) $+R_{n}+O(\varepsilon)$

Beyond one-loop: reduction not well understood, MI many and process-dependent (and difficult to compute...)

Two-loop: reduction

- •So far: based on traditional IBP-LI RELATIONS [Tkachov; Chetyrkin and Tkachov (1981); Gehrmann and Remiddi (2000)] / LAPORTA ALGORITHM [Laporta (2000)]
- •State of the art for phenomenologically relevant amplitudes
 - 2 \rightarrow 2 with massless internal particles (di-jet, H/V+jet, VV)
 - 2 \rightarrow 2 with one mass scale (ttbar), significant progress towards top-induced H+J
- Going beyond: significant improvements of tools, NEW IDEAS
- Motivated by the one-loop success, many interesting attempts to generalize unitarity ideas / OPP approach to two-loop case
- We are still not there, but a lot of progress → see Tiziano's talk on Thursday
- Interesting proof-of-concept for unitarity-based approaches: 5/6-gluon all-plus amplitudes at two-loops [Badger, Frellesvig, Zhang (2013); Badger, Mogull, Ochiruv, O'Connell (2015); Badger, Mogull, Peraro (2016)]

Two-loop: master integrals

- •For a large class of processes (~ phenomenologically relevant scattering amplitudes with massless internal lines) we think we know (at least in principle) how to compute the (very complicated) MI. E.g.: differential equations [Kotikov (1991); Remiddi (1997); Henn (2013); Papadopoulos (2014) → see Kosta's talk on Thursday]. Recent results for very complicated processes: planar 3-jet [Gehrmann, Henn, Lo Presti (2015)], towards planar Vjj/Hjj [Papadopoulos, Tommasini, Wever (2016) → see Kosta's talk]
- •In these cases, the basis function for the result is very well-known (Goncharov PolyLogs) and several techniques allow to efficiently handle the result (symbol, co-products...) and numerically evaluate it
- Unfortunately, we know that GPL are not the end of the story. For phenorelevant processes, we typically exit from this class when we consider amplitudes with internal massive particles (e.g. ttbar, H+J?)
- Progress in this cases as well (e.g. [Tancredi and Remiddi (2016); Adams, Bogner, Weinzierl (2015-16)]) but we are still far from a satisfactory solution → real conceptual bottleneck for further development

Back to loop induced: NLO for gg → VV

Thanks to the progress in loop-amplitude computations, NLO corrections to $gg \rightarrow WW/ZZ$ and to $gg \rightarrow (H) \rightarrow VV$ signal/background interference

[FC, Melnikov, Röntsch, Tancredi (2015-16); Campbell, Ellis, Czakon, Kirchner (2015)]

→ see Lorenzo's talk tomorrow

- Large corrections (relevant especially for precision pp→ZZ cross-section)
- Higgs interference: large, but as expected $(K_{sig} \sim K_{bkg} \sim K_{int})$
- Top mass effects (important for interference) through 1/m_t expansion → reliable only below threshold (although some hope for past-threshold extension via Padé approximations)

Loop induced: di-Higgs@NLO

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]

→ see Stephen's talk on Thursday

- 2-loop amplitude beyond current reach (reduction and for MI)
- Completely different approach: FULLY NUMERICAL INTEGRATION OF EACH INDIVIDUAL INTEGRAL WITH SECDEC
- Table of 665 phase-space points
- Highly non-trivial computerscience component (GPUs, very delicate numerical integration...)
- Reasonable approximations to extend 1/m_t result beyond the top threshold (rescaled Born, exact real radiation) can fail quite significantly
- Exact K-factor much less flat than for mt approximations

Loop induced: di-Higgs@NLO

[Borowka, Greiner, Heinrich, Jones, Kerner, Schlenk, Schubert, Zirke (2016)]

Now that we know the exact result, many interesting questions:

- do we understand why the approximate m_t result fails so miserably (high energy matching, genuinely large two-loop components...)?
 - •ideal playground for approximation testing. Can we find something which works? Can we study e.g. the Padé approximation used to extend the 1/m_t expansion in gg→VV?
 - •especially relevant because we now know FULLY DIFFERENTIAL NNLO CORRECTIONS IN THE $M_T \rightarrow \infty$ LIMIT ([de Florian et al (2016), see Jonas' talk on Thursday) \rightarrow Would like to know best way to combine the results
- CAN THIS FULLY NUMERICAL APPROACH BE APPLIED TO MORE GENERAL CASES?
 - processes with more than two (m_{HH} , y_{HH}) variables ($gg\rightarrow 41$)
 - processes with a more complicated tensor structure (H+J)

Beyond NLO: progress in fully differential NNLO computations

Few percent accuracy

 $\alpha_{\rm s} \sim 0.1 \rightarrow {\rm few\ percent\ accuracy\ requires\ NNLO}$

- less dependence on unphysical variation ($\mu_{R,F}$) \rightarrow dynamical scales and `art' of scale choice become less of an issue
- in several cases important test of perturbative stability (Higgs, VV...)

Different ingredients: two-loop (VV), one-loop+j (RV), tree+jj (RR)

So NNLO for $pp \rightarrow X$ gives you for free `merged' results for $pp \rightarrow X$ (NNLO), $pp \rightarrow Xj$ (NLO) and $pp \rightarrow Xjj$ (LO)

The problems with NNLO computations

Apart from complicated two-loop amplitudes, the big problem of NNLO computations is how to consistently handle IR singularities

COMPLICATED IR STRUCTURE HIDDEN IN THE PHASE SPACE INTEGRATION

The problems with NNLO computations

Apart from complicated two-loop amplitudes, the big problem of NNLO computations is how to consistently handle IR singularities

- IR divergences hidden in PS integrations
- After integrations, all singularities are manifest and cancel (KLN)
- We are interested in realistic setup (arbitrary cuts, arbitrary observables) → we need fully differential results, we are not allowed to integrate over the PS
- The challenge is to EXTRACT PS-INTEGRATION SINGULARITIES WITHOUT ACTUALLY PERFORMING THE PS-INTEGRATION

The solution: two philosophies

Same problem at NLO. Two different approaches have been developed

Phase space slicing

$$\int |M|^2 F_J d\phi_d = \int_0^{\delta} \left[|M|^2 F_J d\phi_d \right]_{s.c.} + \int_{\delta}^{1} |M|^2 F_J \phi_4 + \mathcal{O}(\delta)$$

- conceptually simple, straightforward implementation
- must be very careful with residual δ dependence (esp. in diff. distr.)
- highly non-local → severe numerical cancellations

Subtraction

$$\int |M|^2 F_J d\phi_d = \int (|M|^2 F_J - \mathcal{S}) d\phi_4 + \int \mathcal{S} d\phi_d$$

- in principle can be made fully local → less severe numerical problems
- requires the knowledge of subtraction terms, and their integration

The solution: two philosophies

Both methods have proven useful for $2 \rightarrow 2$ computations

Phase space slicing

$$\int |M|^2 F_J d\phi_d = \int_0^{\delta} \left[|M|^2 F_J d\phi_d \right]_{s.c.} + \int_{\delta}^{1} |M|^2 F_J \phi_4 + \mathcal{O}(\delta)$$

- qt subtraction [Catani, Grazzini] → H, V, VH, VV, HH
- N-jettiness [Boughezal et al; Gaunt et al] \rightarrow H, V, $\gamma\gamma$, VH, Vj, Hj, single-top

Subtraction

$$\int |M|^2 F_J d\phi_d = \int (|M|^2 F_J - \mathcal{S}) d\phi_4 + \int \mathcal{S} d\phi_d$$

- antenna [Gehrmann-de Ridder, Gehrmann, Glover] → jj, Hj, Vj
- Sector-decomposition+FKS [Czakon; Boughezal, Melnikov, Petriello;
 Czakon, Heymes] → ttbar, single-top, Hj
- P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi] → VBF_H, single-top
- Colorful NNLO [Del Duca, Somogyi, Tocsanyi, Duhr, Kardos]: only e+e-so far

The solution: two philosophies

Both methods have proven useful for $2 \rightarrow 2$ computations

Phase space slicing

- Some of these techniques are quite generic
- IN PRINCIPLE, they allow for ARBITRARY COMPUTATIONS
 - IN PRACTICE: `genuine' $2\rightarrow 2$ REACTIONS, with big computer farms $= (|M|^2 F_J S) d\phi_4 + S d\phi_6$
- ullet antenna [Gehrmann-de Ridder, Gehrmann, Glover] o jj, Hj, Vj
- Sector-decomposition+FKS [Czakon; Boughezal, Melnikov, Petriello;
 Czakon, Heymes] → ttbar, single-top, Hj
- P2B [Cacciari, Dreyer, Karlberg, Salam, Zanderighi] → VBF_H, single-top
- Colorful NNLO [Del Duca, Somogyi, Tocsanyi, Duhr, Kardos]: only e+e-so far

Slicing: a closer look

Due to its highly non-local character, slicing leads to large numerical cancellations → abandoned at NLO

Why can we use it at NNLO?

- huge increase in computing power
- significant progress in NLO computations (speed/stability) → the CPU-intensive '+J' part is highly optimized for free (fully inherited by NLO)
- NNLO corrections smaller than NLO ones: can allow for larger uncertainty on them, without affecting the final result $\rightarrow \delta_{cut}$ can be chosen not too prohibitively small (although careful if extreme precision is required, see m_W determinations)
- So far, relatively `simple' kinematics configurations tested. It would be interesting to stress-test slicing on e.g. 2→3 (impossible right now) or with intricate IR configurations (di-jet)
- Interesting theoretical development: towards leading power corrections in δ (would allow for larger δ_{cut}). Non trivial for generic processes

Subtraction: a closer look

Very different approaches, each with its own merits/problems

- antenna: almost fully local subtraction, fully analytic. Entirely worked out only for massless processes (technical problems, difficult integrated subtractions)
- sector-decomposition+FKS: fully local, numerical integration of integrated subtractions. As a consequence, massive processes are not a problem
- projection to Born: local, very nice trick to get integrated subtraction for free, but requires prior knowledge of $d\sigma^{NNLO}/d\Phi^{Born} \rightarrow limited$ applicability, small room for checks

Many results, but still in 'proof-of-concept' phase

- an obviously optimal framework has not appeared yet
- despite flood of results, (a lot of) theoretical work still needed
- all the `latest technologies' in NLO not present here
- large room for improvement

Recent NNLO results: di-bosons

In the last few months, the PROGRAM OF COMPUTING FULLY DIFFERENTIAL NNLO CORRECTION TO DI-BOSON PROCESSES HAS BEEN COMPLETED

→ see Marius' talk on Thursday

WZ vs data

- $\bullet q_t$ subtraction. δ -indep. FULLY DEMONSTRATED at the differential level
- •General picture: GOOD AGREEMENT DATA/NNLO (with some possible room for discussion for WW jet-veto, see [Dawson et al (2016)])

Recent NNLO results: single-top

t-channel single-top plus top-decay [Berger, Gao, Yuan, Zhu (2016)]

- Mixture of slicing and subtraction (P2B)
- •NNLO_{prod} \otimes NNLO_{dec} (in the NWA approximation) \rightarrow very clean data/theory comparison possible

Recent NNLO results: ttbar

Fully differential ttbar results [Czakon, Heymes, Mitov (2015-16)]

- •Sector-decomposition + FKS: STRIPPER-4D
- •Stable top, exhaustive differential studies, scale-dependence study
- Alleviated data/theory tension for p_{t,top} at the LHC

Recent NNLO results: V+J phenomenology

see Alexander's talk tomorrow

Data / theory ratio, Z+jet

Antenna [Gehrmann-de Ridder et al (2016)]

N-Jettiness [Boughezal et al (2016)]

- Also at NNLO, slight data/theory tension
- Disappears for normalized ratios, but not accounted for systematics / luminosity uncertainties
- The cleanest possible measurement... SHOULD WE BE WORRIED?

Recent NNLO results: MCFM@NNLO

[Campbell, Ellis, Williams (2016); Campbell et al (2016); Boughezal et al (2016)]

- •NNLO slicing available for some color-singlet processes in MCFM
- •V/H+J will be next?

1400

1600

Recent NNLO results: H+J phenomenology

Antenna [Chen et al (2016)]

FKS+Sector Decomposition

[FC, Melnikov, Schulze (2015+YR4)]

- Realistic final states → fiducial region
- Important benchmarking between different computations
- Non-trivial final states possible

Application of f.o. results: H and jet vetoes

[Banfi, FC, Dreyer, Monni, Salam, Zanderighi, Dulat (2015)]

- •Combination of f.o. N³LO (Higgs inclusive) and NNLO (H+J exclusive) with NNLL resummation, LL_R resummation, mass effects...
- No breakdown of fixed (high) order till very low scales

Application of NNLO results: H pt

[Monni, Re, Torrielli (2016)]

- Matching of NNLO H+J with NNLL Higgs p_T resummation
- Significant reduction of perturbative uncertainties
- •Again, no breakdown of perturbation theory (resummation effects: 25% at $p_T = 15$ GeV, $\sim 0\%$ at $p_T = 40$ GeV)

Conclusions and outlook

- Fixed order computation at the heart of LHC precision program
- Thanks to a lot of progress in the past, now NLO predictions are standard, even for complicated problem
- •Recent breakthrough in NNLO conceptual problems lead to flood of new phenomenological results for genuinely 2→2 processes
- First genuine hadron-collider N³LO computation

Great situation, but going beyond will require significant development

- •multi-leg two-loop amplitudes (3-jet, H/V+jj)
- •loop integrals with internal massive particles (Higgs p_T)
- •improvements on NNLO subtraction schemes (both purely technical/implementation-level and hopefully conceptual)
- Higgs@N³LO differential

A LOT OF THEORETICAL FUN AHEAD, DIRECTLY RELEVANT FOR LHC PHENOMENOLOGY!

Thank you very much for your attention!