Resummation in PDF fits

Marco Bonvini

Rudolf Peierls Centre for Theoretical Physics, University of Oxford

QCD@LHC, Zürich, 22 August 2016

Related to work with the NNPDF collaboration

Logarithmic enhancement: resummation

Single (double) logarithmic enhancements

$$
\alpha_{s}^{k} \log ^{j} \quad 0 \leq j \leq(2) k
$$

If/when

$$
\alpha_{s} \log ^{(2)} \sim 1
$$

all such terms in the perturbative series are equally important:

all-order RESUMMATION

Goals of resummations in PDF fits:

- provide PDFs consistent with resummed computations
- improve the quality of PDF fits
- investigate the impact of higher orders (and thus estimate the uncertainty from missing higher orders)
- getting closer to "all-order PDFs"

Resummations in this talk

Large- x : threshold resummation

- $x \rightarrow 1$
- due to soft gluon emissions
- resums double logs $\left(\frac{\log ^{k}(1-x)}{1-x}\right)_{+}$
- in Mellin space, $\log N$ at $N \rightarrow \infty$
- [MB,Marzani, Rojo,Rottoli, Ubiali, Ball,Bertone, Carrazza,Hartland 1507.01006]

Small- x : high-energy (BFKL) resummation

- $x \rightarrow 0$
- due to high-energy gluon emissions

NNPDF3.0 NLO dataset

- resums single logs $\frac{1}{x} \log ^{k} x$
- in Mellin space, poles $1 /(N-1)$ in the limit $N \rightarrow 1$
- [MB,Marzani,Peraro 1607.02153] [NNPDF (in preparation)]

Resum what?

Observable:

$$
\begin{aligned}
& \sigma=\sigma_{0} C\left(\alpha_{s}(\mu)\right) \otimes f(\mu)[\otimes f(\mu)] \\
& \mu^{2} \frac{d}{d \mu^{2}} f(\mu)=P\left(\alpha_{s}(\mu)\right) \otimes f(\mu)
\end{aligned}
$$

Evolution:

Any object with a perturbative expansion and a log enhancement:

- coefficient functions $C\left(\alpha_{s}(\mu)\right)$ (observable)
- splitting functions $P\left(\alpha_{s}(\mu)\right)$ (evolution)

	observable coefficient functions $C\left(\alpha_{s}(\mu)\right)$	evolution splitting functions $P\left(\alpha_{s}(\mu)\right)$
large- x	(N)NNLL	-
small- x	LLx	NLLx

Threshold resummation of inclusive cross sections

Dressing the Born with soft gluon emissions leads to double log enhancement

$$
C(N)=C_{\mathrm{LO}}(N)\left[1+\sum_{n=1}^{\infty} \alpha_{s}^{n} \sum_{k=0}^{2 n} c_{n k} \log ^{k} N\right] \times\left[1+\mathcal{O}\left(\frac{1}{N}\right)\right]
$$

Known to \mathbf{N}^{3} LL for DIS, DY, Higgs: $k=2 n, 2 n-1, \ldots, 2 n-6$ and to NNLL for many others: $k=2 n, 2 n-1, \ldots, 2 n-4$

Well known formalism, can be derived in several ways (diagrammatic approach, factorization methods, path-integral approach, SCET)

$$
\begin{aligned}
& \frac{C(N)}{C_{\mathrm{LO}}(N)}=g_{0}\left(\alpha_{s}\right) \exp \left[\frac{1}{\alpha_{s}} g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\alpha_{s}^{2} g_{4}\left(\alpha_{s} L\right)+\ldots\right] \\
& L=\log N
\end{aligned}
$$

Available for

- total cross sections σ
- invariant mass distributions $d \sigma / d M^{2}$
- double-differential invariant mass + rapidity distributions $d \sigma / d M^{2} / d Y$

Processes in a global (NNPDF) PDF fits

Process	observable	resummation available
DIS	$d \sigma / d x / d Q^{2}(\mathrm{NC}, \mathrm{CC}$, charm, $\ldots)$	YES
DY Z / γ	$d \sigma / d M^{2} / d Y$	YES
DY W	differential in the lepton kinematics	NO
$t \bar{t}$	total σ	YES
jets	inclusive $d \sigma / d p_{t} / d Y$	YES $/$ NO

Including DY W requires threshold resummation at fully differential level: no public code available (yet?)

Jets are currently available at NLO and NLL, but partial NNLO results indicate that NLL is very poor: we excluded them (gluon poorly determined!)

DIS, DY available from TROLL (TROLL Resums Only Large-x Logarithms) www.ge.infn.it/~bonvini/troll
$t \bar{t}$ available from top++ www.alexandermitov.com/software

Effects on the theory predictions

BCDMS F_{2} Proton

E866 Drell-Yan

CHORUS Neutrino DIS

Impact on PDF fits: PDFs

NNPDF3.0 DIS+DY+Top, $Q^{2}=10^{4} \mathrm{GeV}^{2}$

Impact on PDF fits: luminosities

Impact on phenomenology

Higgs:

Higgs cross section: gluon fusion

Higgs cross section: gluon fusion

SUSY particles:

[Beenakker,Borschensky,Krämer,Kulesza,Laenen,Marzani,Rojo 1510.00375]

Impact on PDF fits: χ^{2}

Experiment	NNPDF3.0 DIS+DY+top			
	NLO	NNLO	NLO+NLL	NNLO+NNLL
NMC	1.39	1.34	1.36	1.30
SLAC	1.17	0.91	1.02	0.92
BCDMS	1.20	1.25	1.23	1.28
CHORUS	1.13	1.11	1.10	1.09
NuTeV	0.52	0.52	0.54	0.44
HERA-I	1.05	1.06	1.06	1.06
ZEUS HERA-II	1.42	1.46	1.45	1.48
H1 HERA-II	1.70	1.79	1.70	1.78
HERA charm	1.26	1.28	1.30	1.28
DY E866	1.08	1.39	1.68	1.68
DY E605	0.92	1.14	1.12	1.21
CDF Z rap	1.21	1.38	1.10	1.33
D0 Z rap	0.57	0.62	0.67	0.66
ATLAS Z 2010	0.98	1.21	1.02	1.28
ATLAS high-mass DY	1.85	1.27	1.59	1.21
CMS 2D DY 2011	1.22	1.39	1.22	1.41
LHCb Z rapidity	0.83	1.30	0.51	1.25
ATLAS CMS top prod	1.23	0.55	0.61	0.40
Total	1.233	1.264	1.246	1.269

Resummed χ^{2} slightly worse
DY fixed-target experiment are the origin of the problem

Small- x resummation: overview

Small-x resummation based on k_{t}-factorization
Developed in the 90s-00s [Catani,Ciafaloni, Colferai,Hautmann,Salam,Stasto] [Altarelli,Ball,Forte]
Affects both evolution (known to LLx and NLLx) and coefficient functions (known only at lowest logarithmic order, which is often NLLx) in the singlet sector

We follow the ABF [Altarelli,Ball,Forte 1995,...,2008] procedure to resum splitting functions and develop a new formalism for coefficient functions [MB,Marzani,Peraro 1607.02153]

We published (and keep developing) a public code
HELL: High-Energy Large Logarithms www.ge.infn.it/~bonvini/hell
which delivers resummed splitting functions and coefficient functions

HELL has been interfaced to APFEL
apfel.hepforge.org opening the door to its usage for PDF fitting

Small- x resummation in DGLAP evolution

Ingredients (ABF):

- duality with BFKL evolution
- symmetry of the BFKL kernel
- momentum conservation
- resummation of (subleading, but fundamental) running coupling effects

At the moment resummation matched only to NLO NNLO+NLLx is practically complicated, but will be done

Small- x resummation in the coefficient functions

High-energy $\left(k_{T}\right)$ factorization:

$$
\sigma \propto \int \frac{d z}{z} \int d^{2} \boldsymbol{k} \hat{\sigma}_{g}\left(\frac{x}{z}, \frac{Q^{2}}{k^{2}}, \alpha_{s}\left(Q^{2}\right)\right) \mathcal{F}_{g}(z, \boldsymbol{k}) \quad\left\{\begin{array}{l}
\mathcal{F}_{g}(x, \boldsymbol{k}): \text { unintegrated PDF } \\
\hat{\sigma}_{g}\left(z, \frac{Q^{2}}{k^{2}}, \alpha_{s}\right): \text { off-shell xs }
\end{array}\right.
$$

Defining

$$
\mathcal{F}_{g}(N, \boldsymbol{k})=U\left(N, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right) f_{g}\left(N, \mu^{2}\right)
$$

we get

$$
C_{g}\left(N, \alpha_{s}\right)=\int d^{2} \boldsymbol{k} \hat{\sigma}_{g}\left(N, \frac{Q^{2}}{\boldsymbol{k}^{2}}, \alpha_{s}\right) U\left(N, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right)
$$

At LLx accuracy, U has a simple form, in terms of small-x resummed anom $\operatorname{dim} \gamma$

$$
U\left(N, \frac{\boldsymbol{k}^{2}}{\mu^{2}}\right) \approx \boldsymbol{k}^{2} \frac{d}{d \boldsymbol{k}^{2}} \exp \int_{\mu^{2}}^{\boldsymbol{k}^{2}} \frac{d \nu^{2}}{\nu^{2}} \gamma\left(N, \alpha_{s}\left(\nu^{2}\right)\right)
$$

- Only known at LLx
- Just uses the off-shell cross sections $\hat{\sigma}\left(N, Q^{2} / \boldsymbol{k}^{2}, \alpha_{s}\right)$ (one for each process)
- Can be included directly in HELL
- Formally equivalent to ABF (practically easier and numerically stabler)

Small- x resummation in massless DIS

Towards a small- x resummed fit

For a fit we need additional process:

- massive DIS coefficient functions
- Drell-Yan
- jets

The first is the most urgent (allows a DIS-only fit)
The off-shell coefficients for heavy-quark production in DIS are available [Catani,Hautmann 1994], implementation in HELL in progress

Need also to update the VFNS! (FONLL in the NNPDF case)
Rather easy, however it turns out that matching conditions also resum
[MB,Marzani,.... (work in progress)]

Drell-Yan rapidity distributions have never been resummed in the ABF formalism due to technical difficulties \rightarrow should be simpler and doable with the new formalism

Do we need small- x resummation for jets?

Small- x resummation: results

Conclusions

PDF fit with threshold resummation

- DIS + DY $(Z / \gamma)+t \bar{t} \checkmark$
- sizeable effect at NLO+NLL, small effect at NNLO+NNLL
- to be done:
- include missing processes (DY W, jets)
- understand (or exclude?) fixed-target DY
- consider other choices for resummation (different subleading terms, better description of the not-too-large- x region)
[MB,Marzani 1405.3654]
PDF fit with high-energy resummation
- NLO+NLLx evolution
- resummed coefficient functions: massless DIS \checkmark, massive DIS \checkmark, DY x, jets x
- resummed matching conditions
- preliminary NLO+NLLx fits are in progress
- to be done: evolution at NNLO+NLLx

Outlook:

- PDF fit with joint (threshold + high-energy) resummation?
- other soft resummations?

Backup slides

Reduced dataset

Threshold resummation in DIS

TROLL delivers $\Delta_{j} K_{\mathrm{N}^{n} L \mathrm{LL}}$ to be used as $\sigma_{\text {res }}=\sigma_{\mathrm{N}^{j} \mathrm{LO}}+\sigma_{\mathrm{LO}} \times \Delta_{j} K_{\mathrm{N}^{n} \mathrm{LL}}$

Threshold resummation in Drell-Yan

Improved threshold resummation

$$
\frac{C(N)}{C_{\mathrm{LO}}(N)}=g_{0}\left(\alpha_{s}\right) \exp \left[\frac{1}{\alpha_{s}} g_{1}\left(\alpha_{s} L\right)+g_{2}\left(\alpha_{s} L\right)+\alpha_{s} g_{3}\left(\alpha_{s} L\right)+\ldots\right] \times\left[1+\mathcal{O}\left(\frac{1}{N}\right)\right]
$$

N-soft: standard resummation considered in our fit, neglects all $1 / N$ terms ψ-soft: improved resummation, includes some $1 / N$ terms

Higgs cross section: gluon fusion
ψ-soft is more predictive than N-soft [MB,Marzani 1405.3654]
[MB,Marzani,Muselli,Rottoli 1603.08000]

Small- x resummation: brief overview

DGLAP:

$$
\mu^{2} \frac{d}{d \mu^{2}} f\left(x, \mu^{2}\right)=\int \frac{d z}{z} P\left(\frac{x}{z}, \alpha_{s}\left(\mu^{2}\right)\right) f\left(z, \mu^{2}\right)
$$

BFKL:

$$
x \frac{d}{d x} f\left(x, \mu^{2}\right)=\int \frac{d \nu^{2}}{\nu^{2}} K\left(x, \frac{\mu^{2}}{\nu^{2}}, \alpha_{s}(\cdot)\right) f\left(x, \nu^{2}\right)
$$

double Mellin transform $f(N, M)=\int d x x^{N} \int \frac{d \mu^{2}}{\mu^{2}}\left(\frac{\mu^{2}}{\mu_{0}^{2}}\right)^{-M} f\left(x, \mu^{2}\right)$

$$
\begin{array}{ll}
\text { DGLAP: } & M f(N, M)=\gamma\left(N, \alpha_{s}(\cdot)\right) f(N, M)+\text { boundary } \\
\text { BFKL: } & N f(N, M)=\chi\left(M, \alpha_{s}(\cdot)\right) f(N, M)+\text { boundary }
\end{array}
$$

When both are valid (small x, large μ^{2}), consistency between the solutions gives (at fixed coupling)

$$
\chi\left(\gamma\left(N, \alpha_{s}\right), \alpha_{s}\right)=N
$$

duality relation
For $\chi\left(M, \alpha_{s}\right)=\alpha_{s} \chi_{0}(M)$
the dual γ contains all orders in α_{s} / N

Small- x resummation: brief overview

What do we get?

- LL: strong growth at small x (not observed)
- NLL: no enhancement at small x (!!)

Totally unstable, due to perturbative instability of the BFKL kernel

ABF solution [Altarelli,Ball,Forte 1995,...,2008]

- use duality to resum BFKL kernel
- exploit symmetry $M \rightarrow 1-M$ of χ
- impose momentum conservation
- reuse duality to get resummed anomalous dimensions

$$
\alpha_{\mathrm{s}}=0.2, \mathrm{n}_{\mathrm{f}}=4
$$

The result is perturbatively stable!
Finally

- resum running coupling contributions (changes the nature of the small- N singularity: branch-cut to pole)

Resummation in the evolution: large x

Singlet diagonal ($P_{q q}, P_{g g}$) and non-singlet ($P_{\mathrm{ns}}^{ \pm}$):

$$
\begin{aligned}
& P\left(x, \alpha_{s}\right)=\frac{A\left(\alpha_{s}\right)}{(1-x)_{+}}+B\left(\alpha_{s}\right) \delta(1-x)+C\left(\alpha_{s}\right) \log (1-x)+\ldots \\
& \gamma\left(N, \alpha_{s}\right)=-A\left(\alpha_{s}\right) \log N+\left[B\left(\alpha_{s}\right)-\gamma A\left(\alpha_{s}\right)\right]-C\left(\alpha_{s}\right) \frac{\log N}{N}+\ldots
\end{aligned}
$$

no \log enhancement!

Singlet off-diagonal $\left(P_{q g}, P_{g q}\right)$:

$$
\begin{aligned}
& P\left(x, \alpha_{s}\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n+1}\left[\sum_{k=0}^{2 n} d_{n k} \log ^{k}(1-x)+\ldots\right] \\
& \gamma\left(N, \alpha_{s}\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n+1}\left[\sum_{k=0}^{2 n} \tilde{d}_{n k} \frac{\log ^{k} N}{N}+\ldots\right]
\end{aligned}
$$

Double log enhancement of the next-to-soft (NS) contributions
Can be resummed up to NNLL ($k=0,1,2$)
Expected effect: negligible

Resummation in the evolution: small x

Singlet:

$$
\begin{aligned}
& P\left(x, \alpha_{s}\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n+1}\left[\sum_{k=0}^{n} a_{n k} \frac{\log ^{k} x}{x}+\sum_{k=0}^{2 n} b_{n k} \log ^{2 k} x+\ldots\right] \\
& \gamma\left(N, \alpha_{s}\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n+1}\left[\sum_{k=0}^{n} \frac{a_{n k}}{(N-1)^{k+1}}+\sum_{k=0}^{2 n} \frac{b_{n k}}{N^{k+1}}+\ldots\right]
\end{aligned}
$$

Single log enhancement at leading small x, in the singlet sector

$$
P_{\text {singlet }}=\left(\begin{array}{cc}
P_{g g} & P_{g q} \\
P_{q g} & P_{q q}
\end{array}\right)=\left(\begin{array}{cc}
\mathrm{LL} & \mathrm{LL} \\
\text { NLL } & \text { NLL }
\end{array}\right)
$$

Non-singlet:

$$
P\left(x, \alpha_{s}\right)=\sum_{n=0}^{\infty} \alpha_{s}^{n+1}\left[\sum_{k=0}^{2 n} b_{n k} \log ^{k} x+\ldots\right]
$$

is double log enhanced but subleading.

