ABMP16 PDFs

S.Alekhin (Univ. of Hamburg & IHEP Protvino) (in collaboration with J.Blümlein, S.Moch, and R.Plačakytė)

- HERA I+II data: $\alpha_s(M_z)$, m_c , and m_b
- Drell-Yan data from the LHC and Tevatron: Isospin asymmetry and d/u at large x
- t-quark data: m, and gluon distribution
- Charm production data from NOMAD and CHORUS: strange sea

sa, Blümlein, Caminada, Lipka, Lohwasser, Moch, Petti, Plačakytė hep-ph/1404.6469

sa, Blümlein, Moch, Plačakytė, hep-ph/1508.07923

QCD@LHC2016, Univ. Zurich, 25 Aug 2016

H1 and ZEUS hep-ex/1506.06042

Inclusive HERA I+II data

The value of χ^2 /NDP is bigger than 1, however still comparable to the pull distribution width

HERA charm data and $m_{c}(m_{c})$

H1/ZEUS PLB 718, 550 (2012)

$m_{c}(m_{c})=1.246\pm0.023$ (h.o.) GeV NNLO

Kiyo, Mishima, Sumino hep-ph/1510.07072

 Approximate NNLO massive Wilson coefficients (combination of the threshold corrections, high-energy limit, and the NNLO massive OMEs) Kawamura, Lo Presti, Moch, Vogt NPB 864, 399 (2012)
 Update with the pure singlet massive OMEs Ablinger et al. NPB 890. 48 (2014)

- \rightarrow improved theoretical uncertainties
- Running-mass definition of m_c $X^2/NDP=66/52$ $m_c(m_c)=1.252\pm0.018(exp.) GeV$ ABMP16 $m_c(m_c)=1.24\pm0.03(exp.) GeV$ ABM12
- RT optimal X²/NDP=82/52 m_c(pole)=1.25 GeV
 FONLL X²/NDP=60/47
- m_c(pole)=1.275 GeV
- S-ACOT-χ X²/NDP=59/47 m (pole)=1.3 GeV

NNLO MMHT14 EPJC 75, 204 (2015)

NNLO NNPDF3.0 JHEP 1504, 040 (2015)

NNLO

CT14 hep-ph 1506.07443

Accardi, et al. hep-ph/1603.08906

HERA bottom data and $m_{b}(m_{b})$

Collider W&Z data used in the fit

In the forward region $x_2 >> x_1$ $\sigma(W^+) \sim u(x_2) \text{ dbar } (x_1)$ $\sigma(W^-) \sim d(x_2) \text{ ubar } (x_1)$ $\sigma(Z) \sim Q_u^2 u(x_2) \text{ ubar } (x_1) + Q_p^2 d(x_2) \text{ dbar } (x_1)$ $\sigma(DIS) \sim q_u^2 u(x_2) + q_d^2 d(x_2)$ Forward W&Z production probes small/large x and is complementary to the DIS \rightarrow constraint

on the quark iso-spin asymmetry

Experiment		ATLAS	CMS		D0		LHCb		
\sqrt{s} (TeV)		7	7	8	1.96		7	8	8
Final states		$W^+ \rightarrow l^+ \nu$	$W^+ \to \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$	$W^+ \rightarrow \mu^+ \nu$ $W^+ \rightarrow e^+ \nu$		$W^+ \rightarrow \mu^+ \nu$	$Z \rightarrow e^+ e^-$	$W^+ ightarrow \mu^+ \nu$
		$W^- \to l^- \nu$	$W^- \to \mu^- \nu$	$W^- \to \mu^- \nu$	$W^- \rightarrow \mu^- \nu$	$W^- ightarrow e^- \nu$	$W^- \to \mu^- \nu$		$W^- \to \mu^- \nu$
		$Z \to l^+ l^-$					$Z \to \mu^+ \mu^-$		$Z \to \mu^+ \mu^-$
Cut on the lepton P_T		$P_T^l > 20 \mathrm{GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^{\mu} > 25 \text{ GeV}$	$P_T^e > 25 \text{ GeV}$	$P_T^{\mu} > 20 \text{ GeV}$	$P_T^e > 20 \text{ GeV}$	$P_T^{\varepsilon} > 20 { m ~GeV}$
NDP		30	11	22	10	13	31	17	32
χ^2	ABMP16	31.0	22.4	16.5	17.6	19.0	45.1	21.7	40.0
	CJ15	-	-	_	20	29	-	_	-
	CT14	42	_ a	_	_	34.7	_	_	-
	JR14	-	-	_	_	-	_	_	-
	HERAFitter	-	-	-	13	19	-	-	-
	MMHT14	39	-	-	21	-	-	-	-
	NNPDF3.0	35.4	18.9	-	-	-	-	-	-

"Statistically less significant data with the cut of $P_T^{\mu} > 35$ GeV are used.

TABLE I: Compilation of the precise data on W- and Z-production in pp and $\bar{p}p$ collisions and the χ^2 values obtained for these data sets in different PDF analyzes. The low-accuracy, obsolete and superseded data are not included.

Obsolete/superseded/low-accuracy Tevatron and LHC data are not used

Most recent DY inputs

cf. earlier data in sa, Blümlein, Moch, Plačakytė, hep-ph/1508.07923

ATLAS W&Z at 13 TeV

ATLAS, hep-ex/1603.09222

Data are well accommodated into the fit $\chi^2/NDP=9/6$

Sea quark iso-spin asymmetry

• At x~0.1 the sea quark iso-spin asymmetry is controlled by the fixed-target DY data (E-866), weak constraint from the DIS (NMC)

• At x<0.01 Regge-like constraint like $x^{(a-1)}$, with a close to the meson trajectory intercept; the "unbiased" NNPDF fit follows the same trend

Onset of the Regge asymptotics is out of control

Impact of the forward Drell-Yan data

• Relaxed form of the sea iso-spin asymmetry I(x) at small x; Regge-like behaviour is recovered only at x~10⁻⁶; at large x it is still defined by the phase-space constraint

- Good constraint on the d/u ratio w/o deuteron data → independent extraction of the deuteron corrections Accardi, Brady, Melnitchouk, Owens, Sato hep-ph/1602.03154;
- Big spread between different PDF sets, up to factor of 30 at large $x \rightarrow$ PDF4LHC averaging is misleading

DY at large rapidity

The data can be evidently used for consolidation of the PDFs, however, unification of the theoretical accuracy is also needed

ABM	СТ	MMHT	NNPDF
Interpolation of accurate NNLO grid (a la FASTNLO)	NNLL (ResBos)	NLO + NNLO K-factor	NLO + NNLO C-factors (y-dependent K-factors)

$$(\bar{d} - \bar{u})(x, Q_0^2) = A(1 - x)^{\eta_{sea} + 2} x^{\delta} (1 + \sum_{i=1}^4 a_i T_i (1 - 2x^{\frac{1}{2}})),$$

The sum of χ^2 /NDP for the DY data by LHCB, CMS, and D0 from the table:

184/119 (MMHT16)

142/115 (ABMP16)

Implication for(of) the single-top production

ATLAS and CMS data on the ratio t/tbar are in a good agreement

• The predictions driven by the froward DY data are in a good agreement with the single-top data (N.B.: ABM12 is based on the deuteron data \rightarrow consistent deuteron correction was used) talks by Petti at DIS2016

Single-top production discriminate available PDF sets and can serve as a standard candle process

- Combination of the DY data (disentangle PDFs) and the DIS ones (constrain α_{1})
- ${\scriptstyle \bullet}$ Run-II data pull $\alpha_{{}_{\rm S}}$ up by 0.001
- the value of α_s is still lower than the PDG one: pulled up by the SLAC and NMC data; pulled down by the BCDMS and HERA ones
- only SLAC determination overlap with the PDG band provided the high-twist terms are taken into account

High twists at small x

• $H_{T}(x)$ continues a trend observed at larger x; $H_{2}(x)$ is comparable to 0 at small x

- $h_{\tau}=0.05\pm0.07 \rightarrow \text{slow vanishing at } x \rightarrow 0$
- $\Delta \chi^2 \sim -40$

Harland-Lang, Martin, Motylinski, Thorne hep-ph/1601.03413

t-quark data from the LHC and Tevatron

Running mass definition \rightarrow better perturbative stability

sa, Blümlein, Moch PRD 86, 054009 (2012)

- m_t(m_t)=160.9±1.1(exp.) GeV NNLO
- $\alpha_s(M_z)=0.1145(9) \rightarrow 0.1147(8)$ NNLO
- moderate change in the large-x gluon distribution

t-quark mass from the single-top production

PDFs fixed

Channel	ABM12 20	ABMP15 52	CT14 53	MMHT14 54	NNPDF3.0 55
tī	158.6 ± 0.6	158.4 ± 0.6	164.7 ± 0.6	164.6 ± 0.6	164.3 ± 0.6
t-channel	159.4 ± 3.8	158.4 ± 3.8	161.4 ± 3.9	162.0 ± 3.9	165.6 ± 4.0
s- & t-channel	158.9 ± 3.4	158.0 ± 3.4	160.2 ± 3.5	160.8 ± 3.5	163.4 ± 3.5

Vacuum stability is quite sensitive to the t-quark mass

Strange sea determinations

- Nominal ABM update (NuTeV/CCFR+NOMAD+CHORUS) demonstrate good agreement with the CMS results
- The ATLAS strange-sea in enhanced, however it is correlated with the d-quark sea suppression \rightarrow disagreement with the FNAL-E-866 data
- Upper margin of the ABM analysis (CHORUS+CMS+ATLAS) is still lower than ATLAS

CHORUS (charm) Integral strangeness suppression factor κ (20 GeV²)=0.654(30)

ATLAS W/Z(incl.)

NOMAD (2μ)

X²/NDP

35/30

52/48

10/6

Summary

The improvements summarized in the new PDF set:

- deuteron data are replaced by the Drell-Yan ones from the LHC and Tevatron \rightarrow reduced theoretical uncertainties in PDFs, in particular in d/u at large x
- the small-x iso-spin sea asymmetry is relaxed and turns negative at $x\sim 10^{-3}$; an onset of the Regge asymptotics still may occur at $x< 10^{-5}$
- improved strange sea determination, particularly at large x
- moderate increase in the large-x gluon distribution due to impact of the ttbar data
- HERA I+II data included \rightarrow improved determination of $m_c(m_c)$;

 $m_{c}(m_{c})=1.252\pm0.018 \text{ GeV}$ $m_{b}(m_{b})=3.83\pm0.12 \text{ GeV}$ $m_{f}(m_{f})=160.9\pm1.1 \text{ GeV}$

$$\alpha_{s}(M_{z})=0.1145(9)$$
 DIS
 $\alpha_{s}(M_{z})=0.1147(8)$ DIS+ttbar

The fit ingredients

DATA:

DIS NC/CC inclusive (HERA I+II added, no deuteron data included) DIS NC charm production (HERA) DIS CC charm production (HERA, NOMAD, CHORUS, NuTeV/CCFR) fixed-target DY LHC DY distributions (ATLAS, CMS, LHCb)

t-quark data from the LHC and Tevatron

QCD:

NNLO evolution NNLO massless DIS and DY coefficient functions NLO+ massive DIS coefficient functions (**FFN scheme**) - NLO + NNLO threshold corrections for NC - NNLO CC at Q>> m_c - running mass NNLO exclusive DY (FEWZ 3.1) NNLO inclusive ttbar production (pole / running mass) Relaxed form of (dbar-ubar) at small x Power corrections in DIS:

target mass effects dynamical twist-4 terms

Computation accuracy

• Accuracy of O(1 ppm) is required to meet uncertainties in the experimental data \rightarrow O(10⁴ h) of running FEWZ 3.1 in NNLO

An interpolation grid a la FASTNLO is used

NNLO DY corrections in the fit

The existing NNLO codes (DYNNLO, FEWZ) are quite time-consuming \rightarrow fast tools are employed (FASTNLO, Applgrid,.....)

- the corrections for certain basis of PDFs are stored in the grid
- the fitted PDFs are expanded over the basis
- the NNLO c.s. in the PDF fit is calculated as a combination of expansion coefficients with the pre-prepared grids

The general PDF basis is not necessary since the PDFs are already constrained by the data, which do not require involved computations \rightarrow use as a PDF basis the eigenvalue PDF sets obtained in the earlier version of the fit

- $\mathbf{P}_{0} \pm \Delta \mathbf{P}_{0}$ vector of PDF parameters with errors obtained in the earlier fit
- **E** error matrix
- ${\bf P}$ current value of the PDF parameters in the fit
- store the DY NNLO c.s. for all PDF sets defined by the eigenvectors of E
- the variation of the fitted PDF parameters $(\mathbf{P} \mathbf{P}_0)$ is transformed into this eigenvector basis
- the NNLO c.s. in the PDF fit is calculated as a combination of transformed ($\mathbf{P} \mathbf{P}_0$) with the stored eigenvector values

d/u ratio at large x

Accarti et al. PRD 84, 014008 (2011)

d/u ratio extracted from the DIS data is quite sensitive to the details of modeling nuclear effects in deuterium

NOMAD charm data in the ABM fit

 $B_{\mu}(E_{\nu}) = \sum r^{h}(E_{\nu})B^{h} = a/(1+b/E_{\nu})$

 fitted simultaneously with the PDFs, etc. using the constraint from the emulsion data

> sa, Blümlein, Caminadac, Lipka, Lohwasser, Moch, Petti, Placakyte hep-ph/1404.6469

The data on ratio 2µ/incl. CC ratio with the 2µ statistics of 15000 events (much bigger than in earlier CCFR and NuTeV samples). NOMAD NPB 876, 339 (2013)

Systematics, nuclear corrections, etc. cancel in the ratio

- pull down strange quarks at x>0.1 with a sizable uncertainty reduction
- $-m_{c}(m_{c})=1.23\pm0.03(exp.)$ GeV is comparable to the ABM12 value

CHORUS charm data in the ABM fit

E6

CMS W+charm data in the ABM fit

- CMS data go above the NuTeV/CCFR by 1σ ; little impact on the strange sea
- The charge asymmetry is in a good agreement with the charge-symmetric strange sea
- Good agreement with the CHORUS data

ATLAS W+charm data in the ABM fit

PDF sets	<i>m</i> _c [GeV]	<i>m_c</i> renorm. scheme	theory method $(F_2^c \text{ scheme})$	theory accuracy for heavy quark DIS Wilson coeff.	χ^2 /NDP for HERA data [127] with xFitter [128, 129]	
ABM12 [2] a	$1.24 \begin{array}{c} + 0.05 \\ - 0.03 \end{array}$	$\overline{\text{MS}} \ m_c(m_c)$	FFNS $(n_f = 3)$	NNLO _{approx}	65/52	66/52
СЛ5 [1]	1.3	m_c^{pole}	SACOT [122]	NLO	117/52	117/52
CT14 [3] ^b						
(NLO)	1.3	m_c^{pole}	SACOT(x) [123]	NLO	51/47	70/47
(NNLO)	1.3	m_c^{pole}	SACOT(x) [123]	NLO	64/47	130/47
HERAPDF2.0 [4] (NLO) (NNLO)	1.47	m_c^{pole} m^{pole}	RT optimal [125] RT optimal [125]	NLO NLO	67/52	67/52
JR14 [5] ^c	1.3	$\overline{\text{MS}} m_c(m_c)$	FFNS $(n_f = 3)$	NNLO _{approx}	62/52	62/52
MMHT14 [6] (NLO) (NNLO)	1.4 1.4	$m_c^{ m pole}$ $m_c^{ m pole}$	RT optimal [125] RT optimal [125]	NLO NLO	72/52 71/52	78/52 83/52
NNPDF3.0 [7] (NLO) (NNLO)	1.275 1.275	m_c^{pole} m_c^{pole}	FONLL-B [<u>124</u>] FONLL-C [<u>124</u>]	NLO NLO	58/52 67/52	60/52 69/52
PDF4LHC15 [8] d	-	-	FONLL-B [124]	-	58/52	64/52
	-	-	RT optimal [125]	-	71/52	75/52
	-	-	SACOT(x) [123]	-	51/47	76/47

No advantage of the GMVFN schemes: the VFN χ^2 values are systematically bigger than the FFN ones

Accardi, et al. hep-ph/1603.08906

Factorization scheme benchmarking

Data allow to discriminate factorization schemes

• FFN scheme works very well in case of correct setting (running mass definition and correct value of m_c) \rightarrow no traces of big logs due to resummation

x_{\min}	$x_{\rm max}$	Q_{\min}^2 (GeV)	$Q_{\rm max}^2 ~({\rm GeV})$	$\Delta \chi^2$ (DIS)	$N_{\rm dat}^{\rm DIS}$	$\Delta \chi^2$ (HERA-I)	$N_{\rm dat}^{\rm hera-1}$
$4 \cdot 10^{-5}$	1	3	10^{6}	72.2	2936	77.1	592
$4 \cdot 10^{-5}$	0.1	3	10^{6}	87.1	1055	67.8	405
$4 \cdot 10^{-5}$	0.01	3	10^{6}	40.9	422	17.8	202
$4 \cdot 10^{-5}$	1	10	10^{6}	53.6	2109	76.4	537
$4 \cdot 10^{-5}$	1	100	10^{6}	91.4	620	97.7	412
$4 \cdot 10^{-5}$	0.1	10	10^{6}	84.9	583	67.4	350
$4 \cdot 10^{-5}$	0.1	100	10^{6}	87.7	321	87.1	227

We conclude that the FFN fit is actually based on a less precise theory, in that it does not include full
resummation of the contribution of heavy quarks to perturbative PDF evolution, and thus provides a less
accurate description of the dataNNPDF PLB 723, 330 (2013)E10

ttbar production with pole and Msbar mass

Running mass definition provides nice perturbative stability

E11