Recent Developments on the CT14 Global Analysis of Q.C.D.

Daniel Stump

Department of Physics and Astronomy Michigan State University

The CTEQ-TEA working group

Sayipjamal Dulat, Jon Pumplin, Carl Schmidt, Daniel Stump, C.-P. Yuan: Michigan State;

Joey Huston: Michigan State;

Tie-Jiun Hou, Pavel Nadolsky: SMU;

Jun Gao: Argonne; Marco Guzzi: Manchester;

"CTEQ-TEA PDFs and HERA I+II Combined Data" T.-J. Hou, S. Dulat, et al, [paper is in preparation]

the CT10 (2010) PDFs and History:

CT14 (2015) PDFs

HERA I combined data

other short-distance processes (CERN, Fermilab, Tevatron)

no LHC

HERA I combined data

other short-distance processes (CERN, Fermilab, Tevatron) updated

LHC

inclusive jet production W and Z production

A new global analysis \equiv CT14_{HERA2}

- Make these changes w.r.t. CT14:
 - replace HERA I ($N_{pts} = 579$) by HERA I+II ($N_{nts} = 1120$)
 - delete NMC $F_{2n}(x,Q)$ ($N_{pts} = 201$)
 - replace prelim. CMS inclusive jet data by the up-dated table
 - add one more parameter to the strange quark PDF,

Compare our results to:

HERA: H. Abramowicz et al, EurPhyJ C75, 580 (2015) MMHT: L. A. Harland Lang et al, EurPhyJ C76, 186 (2016)

NNPDF: J. Rojo, hep-ph 1508.07731 (2015)

Notations

• from 36 experiments we have

$$\begin{split} D_i &= \text{central data values (} i = 1 \dots N \text{)} \\ \sigma_i &= \text{s.d. of uncorrelated errors ('')} \\ \beta_{ji} &= \text{s.d. of correlated systematic errors} \\ &\quad (j = 1 \dots N_{sv} \;\;; \; i = 1 \dots N \text{)} \end{split}$$

• from NNLO (or NLO QCD) we have

$$T_i$$
 = theory value
= T_i ({ α_v ; $v = 1 ... 28$ })

• fit theory and data by χ^2 minimization,

$$\chi^2_{\text{global}} (\{\alpha\}) = \sum_{\text{expt}} \{ \chi^2_{\text{expt}} \}$$

$$\chi^{2}_{\text{expt}} = \min_{\{\mathbf{r}_{j}\}} \left[\sum_{i} \left(D_{i} - \sum_{j} r_{j} \beta_{ji} - T_{i} \right)^{2} / \sigma_{i}^{2} + \sum_{j} r_{j}^{2} \right] = \chi^{2}_{\text{red}} + R^{2}$$

PDF parameters

treating systematic errors as nuisance parameters

Comparing PDF results (CT14 and CT14_{HERA2}) to data (HERA1 and HERA2)

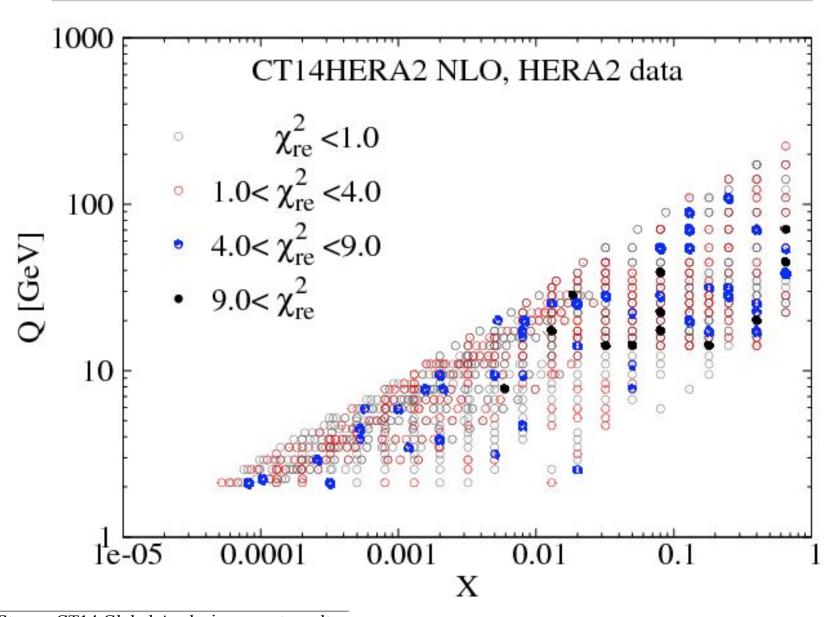
[HERA2 means the HERA I + II combined data (1120 points)]

PDFs	χ ² _{HERA1} /N ₁	χ^2_{HERA2} / N_2	χ^2_{HERA2} / N_2
CT14 (NNLO)	591 /579 (fit)	1469 /1120 (not fit)	= 1.31
CT14 _{HERA2} (NNLO)	610 /579 (not fit)	1402 /1120 (fit)	= 1.25

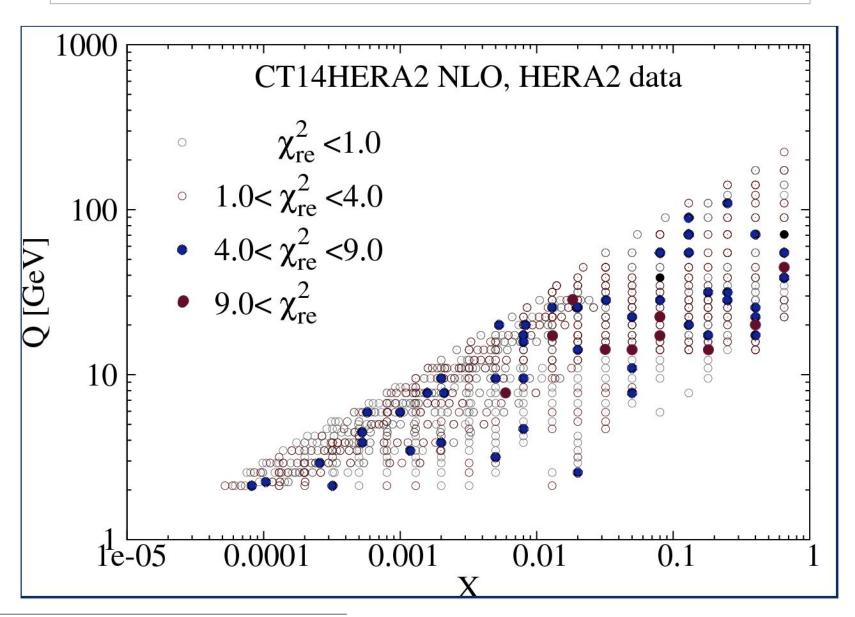
 $\left[\begin{array}{c}\chi^2/N\end{array}\right]_{HERA2}$ is large even when HERA2 is included in the global fit.

Why?

Reduced χ^2 's (for single data points) in the xQ plane



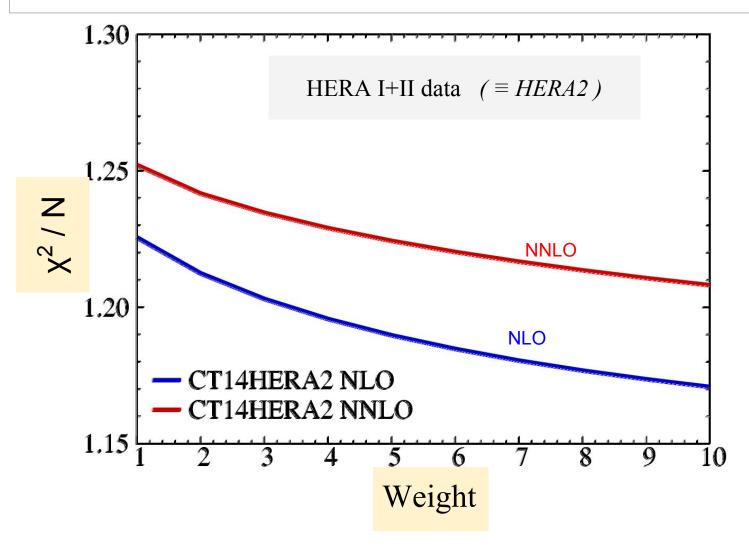
Reduced χ^2 's (for single data points) in the x-Q plane



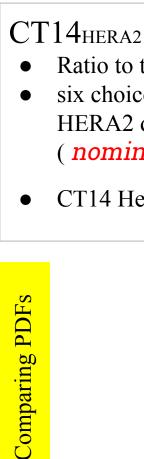
Separate the four HERA2 DIS processes; $(Q_{cut} = 2 \text{ GeV})$

	N _{pts}	$\chi^2_{\rm red.} / N_{\rm pts}$
NC e + p	880	1.11
CC e ⁺ p	39	1.10
NC e ⁻ p	159	1.45
CC e ⁻ p	42	1.52
totals		
[reduced χ^2] /N	1120	1.17
χ^2/N	1120	1.25
R^2/N	1120	0.08

We also studied the impact of different Q^2 kinematic cuts.



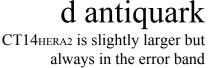
CT14_{HERA2} PDFs compared to CT14



- Ratio to the standard CT14 PDF;
- six choices of weight applied to the HERA2 data set in the global fit (nominal=1 to heaviest=6)
- CT14 Hessian error band (shaded)

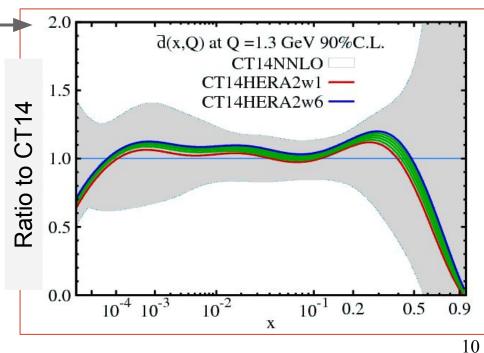
g(x,Q) at Q =1.3 GeV 90%C.L. CT14NNLO CT14HERA2 w1 Ratio to CT14 1.5 CT14HERA2 w6 1.0 0.5 gluon 0.0 10^{-2} 10^{-3} 10^{-1} 0.2 0.5 0.9 X 2.0

2.0



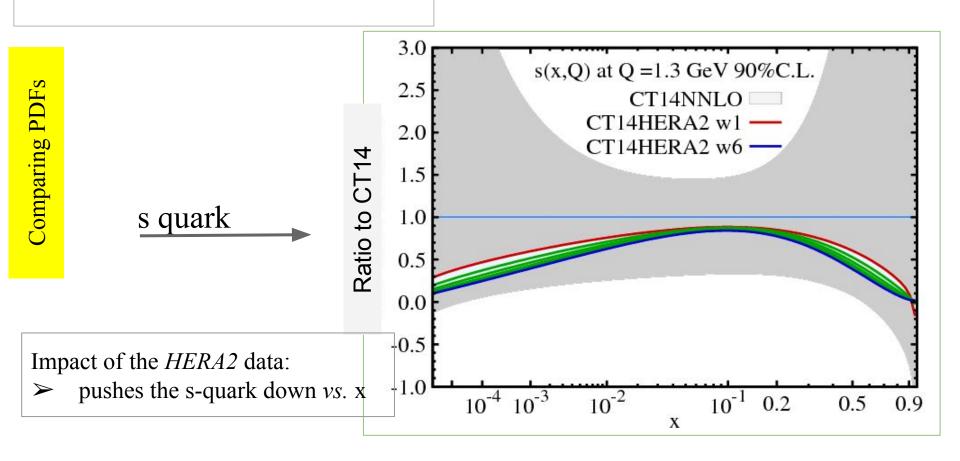
Impact of the *HERA2* data:

- skews the gluon pdf vs. x;
- pushes the d-antiquark up vs. x

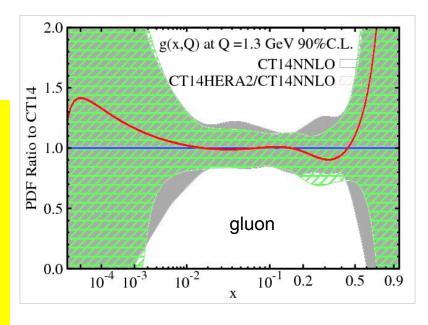


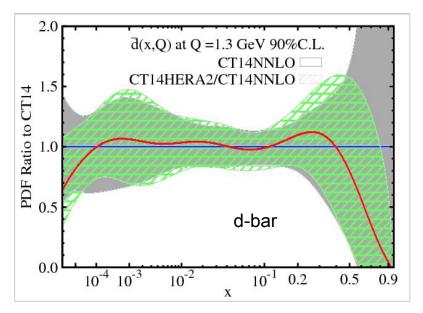
CT14HERA2

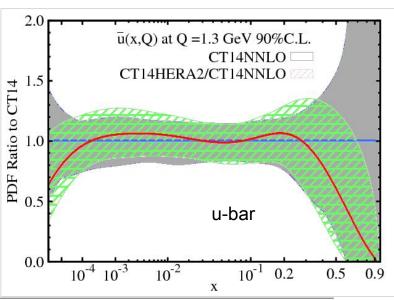
- Ratio to the standard CT14 PDF;
- six choices of **weight** applied to the HERA2 data set in the global fit (nominal=1 to heaviest=6)
- CT14 Hessian error band (shaded)

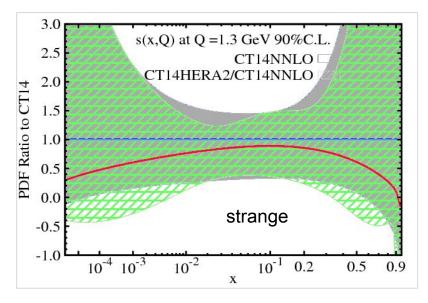


Comparing CT14_{HERA2} and CT14 ; plotting ratios f_{HERA2} / f ; CT14_{HERA2} and CT14 error bands

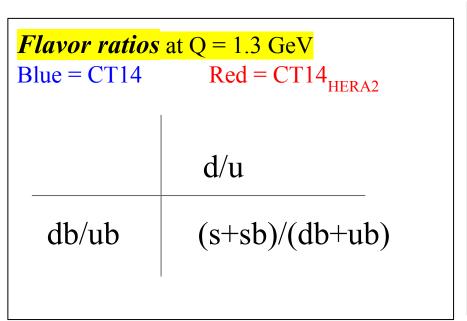


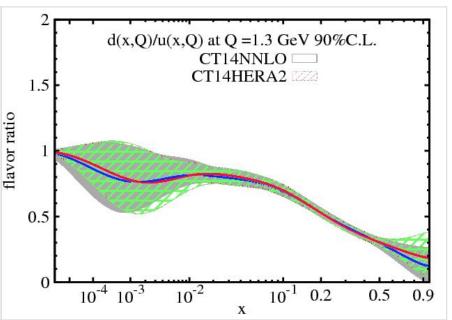


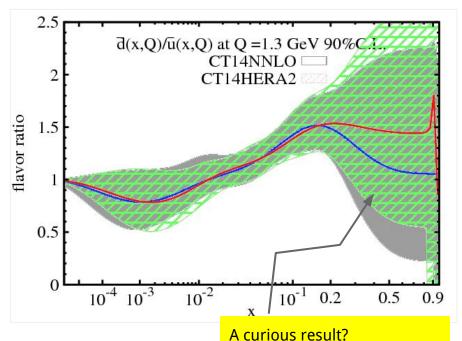


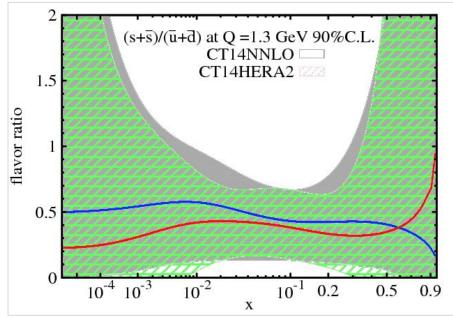


D. R. Stump, CT14 Global Analysis - recent results









D. R. Stump, CT14 Global Ana dbar/ubar > 1 at large x

Comparing cross sections

 \mathbf{W}^{\pm} and \mathbf{Z}^{0} production at the LHC

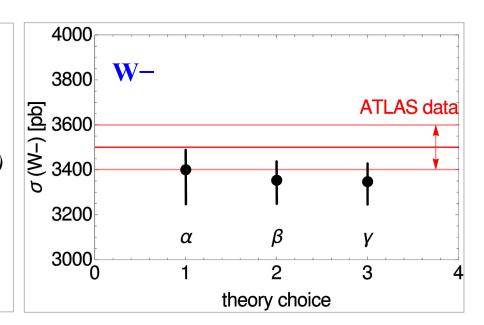
ATLAS fiducial cross section

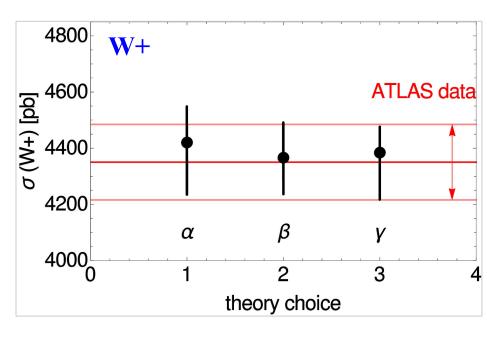
(\exists back-up slide on the CMS cross sections)

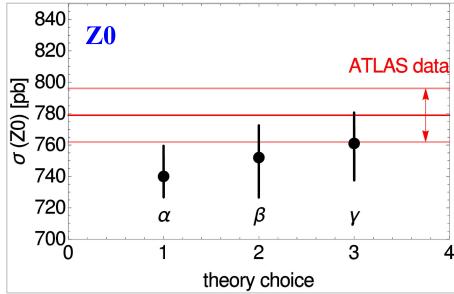
Theory calculations:

$$\alpha = ATLAS$$
 calculation (DYNNLO)

$$\beta = CT14$$
; $\gamma = CT14_{HERA2}$ (RESBOS)







Part 1: Final conclusions

- There are some interesting but small changes in the PDFs, in going from CT14 to CT14_{HERA2}, esp. ū, d, and s;
- the changes are smaller than the current PDF uncertainties;
- so we still recommend CT14 as the preferred PDFs for LHC Run 2;
- availability of CT14_{HERA2}.

Part 1: das Ende

Part 2

"Reconstruction of Monte Carlo Replicas from Hessian parton distributions"; Tie-Jiun Hou, P. Nadolsky, et al; arXiv:1607.06066 [hep-ph]

Quick Review of the Hessian method

Parton DFs
$$f_v(x, Q_0) = F_v(x, \{\alpha\})$$
 parametrization $\{\alpha_i; i = 1 \dots D\}$

Figure of Merit
$$\chi^2(a) \approx \chi^2(0) + \sum_{ij=1}^{D} H_{ij} a_i a_j$$
(a=displacement from min)

 $number\ of\ eigenvectors\ =\ D;$ $separate\ the\ +\ and\ -\ directions.$

Result : 1 "central set" of PDFs and 2×D "error sets"; the LHAPDF format.

The prediction for an observable X(f) is

prediction =
$$X_{\text{central}} + \delta X_{\text{up}} - \delta X_{\text{dn}}$$

(possible asymmetric errors; contradicts the Gaussian hypothesis)

where

$$\delta X_{up} = \left\{ \sum_{i=1}^{D} \left[\max(X_{+i} - X_0, X_{-i} - X_0, 0) \right]^2 \right\}^{1/2}$$

$$\delta X_{dn} = \left\{ \sum_{i=1}^{D} \left[\max(X_0 - X_{+i}, X_0 - X_{-i}, 0) \right]^2 \right\}^{1/2}$$

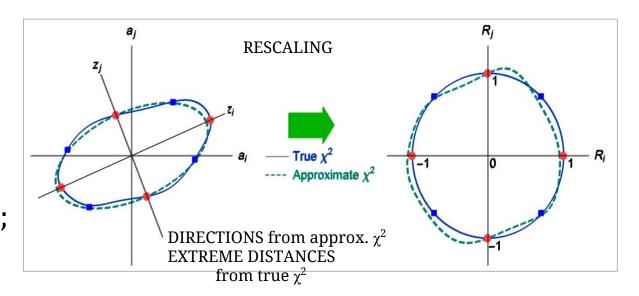
'Replicas" Now generate 1,000 sets of PDFs, stochastically

$$\{ f_v^{(k)}(x, Q_0); k = 1, 2, 3, ..., 1000 \}$$

 $F_{u}(x, \{\alpha\}_{k})$ where $\{\alpha\}_{k}$ is a random variate in D dimensions.

That's the basic idea, but there are some developments ...

 \square rescale from $\{a_1 \dots a_D\}$ to $\{r_1 \dots r_D\}$;



- \Box dP = $(2\pi)^{-D/2} \exp[-\frac{1}{2} \mathbf{r} \cdot \mathbf{r}] d^{D} r$;
- ☐ Deal with the possibility that the Gaussian hypothesis is not valid; *e.g.*, what about the asymmetric errors?
- □ **Ultimate goal**: the **mean** and **standard deviation** of an ensemble of X(f)-values calculated with the replicas, should agree with the **central value** and **uncertainty** calculated with the (1 + 2D) Hessian PDFs.

I need to skip over some subtleties, for lack of time.

```
Hou, Nadolsky, et al, arXiv:1607.06066 [hep-ph]
```

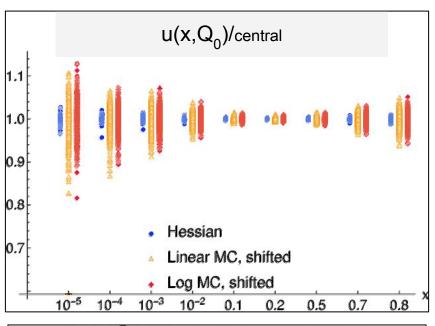
Also, our results should be compared to

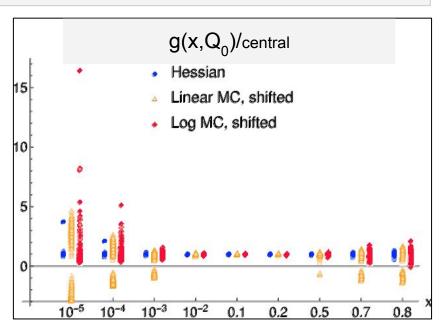
```
G. Watt and R. S. Thorne, JHEP 08, 052 (2012); arXiv:1205.4024
```

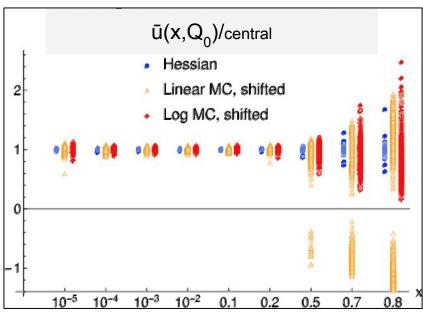
```
We use the same basic method,
but with some different computational details:
"shift mean to best fit", "asymmetry",
"positivity", "Taylor series displacements"
```

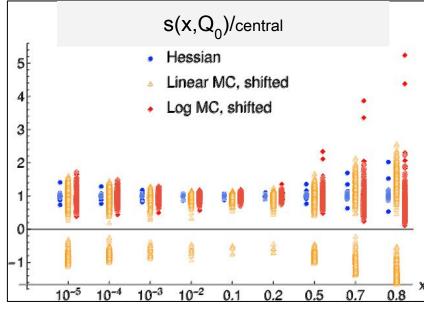
```
⇒ Results ...
(do replica results agree with Hessian?)
```

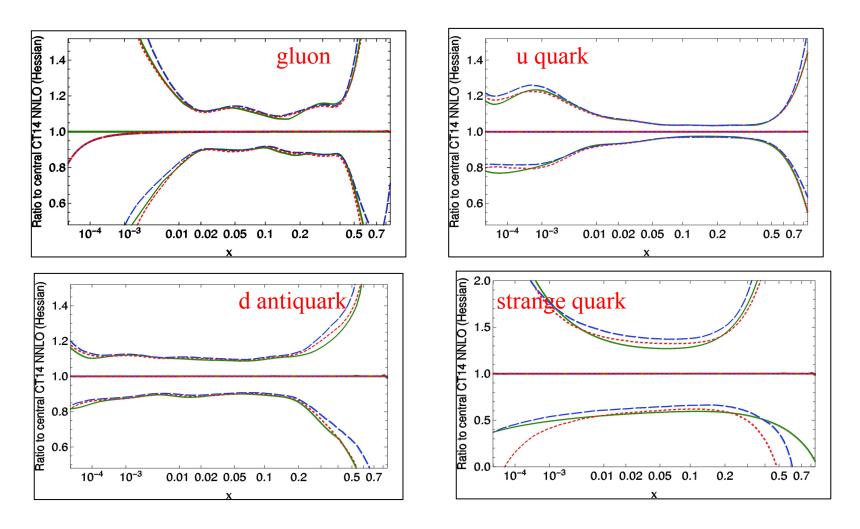
Hessian PDFs and Replica PDFs (linear method) and Replica PDFs (log method)





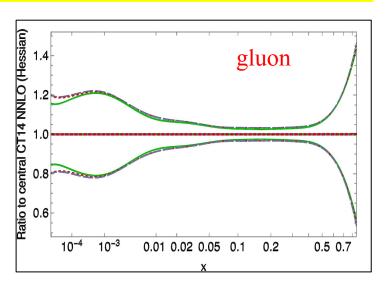


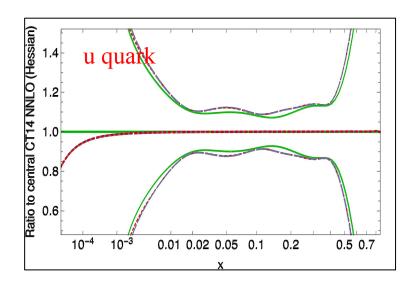


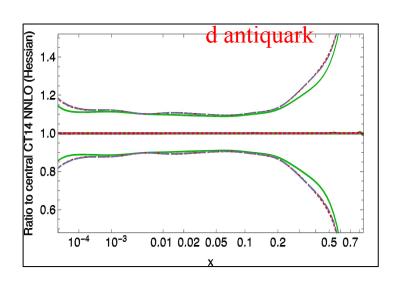


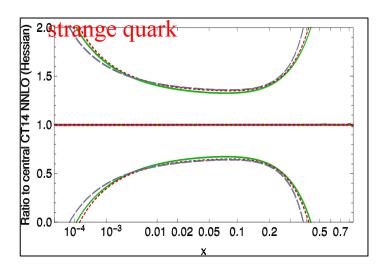
So indeed the S.D. of replicas is approximately equal to the Hessian uncertainty. $MC1 = linear \ MC \ (sampling \ f)$; $MC2 = log \ MC \ (sampling \ ln | f|)$

Comparing PDF uncertainties; i.e., repl.mean and SD *versus* Hessian CT14 NNLO <u>SYMMETRIC uncertainties</u> solid=Hessian; dotted = MC1; dashed = MC2



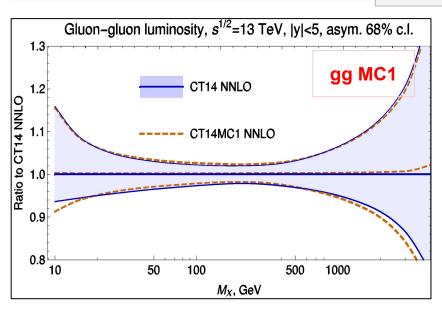


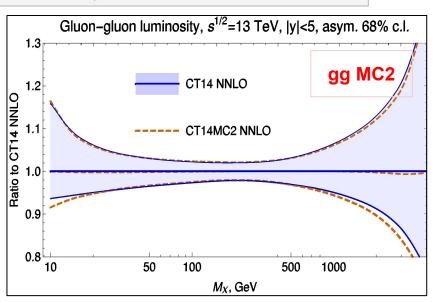


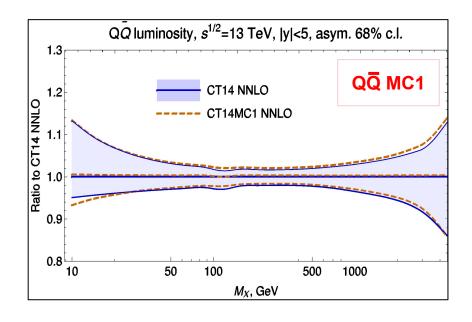


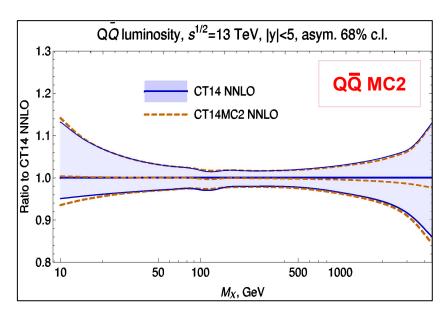
Luminosity Functions:

$$L_{ab}(s, M^{2}, \gamma_{cut}) = \frac{1}{1 + \delta_{ab}} \left[\int_{\frac{M}{\sqrt{s}} e^{i\chi_{cut}}}^{\frac{M}{\sqrt{s}} e^{i\chi_{cut}}} \frac{d\xi}{\xi} f(\xi, M) f(\frac{M}{\xi \sqrt{s}}, M) + (\alpha \leftrightarrow b) \right]$$





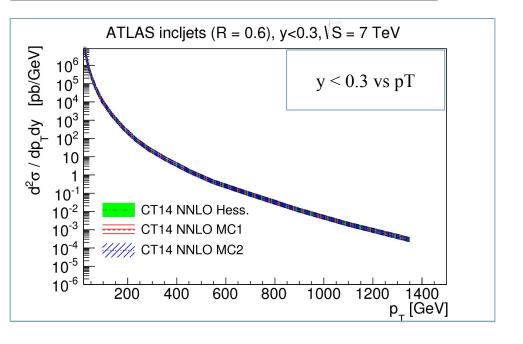


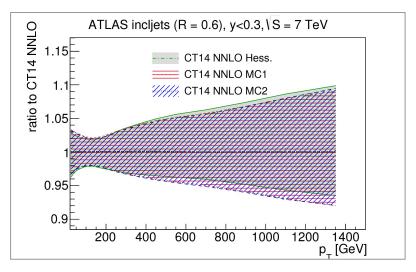


ATLAS inclusive jet product'n @ 7 TeV

An example of a cross section calculation, comparing

- best fit with Hessian uncertainties
- mean and standard dev. of replicas
 - MC1 and MC2



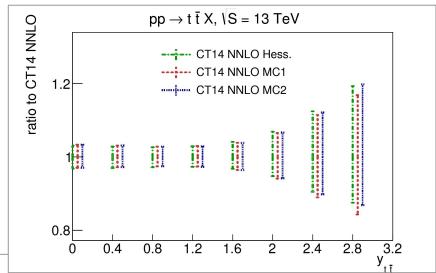


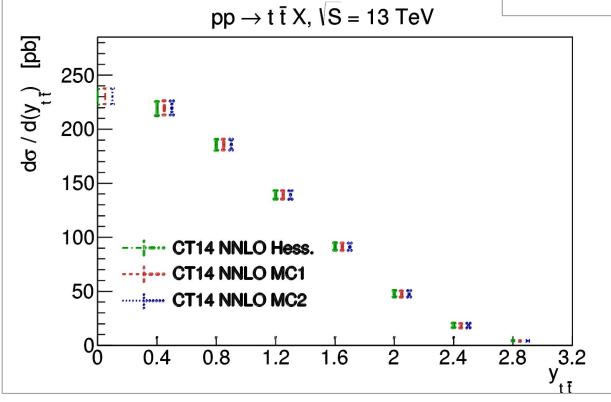
• • The *replica results* closely approximate the *Hessian results*.

Inclusive top-antitop (tt) production

An example of a cross section calculation, comparing

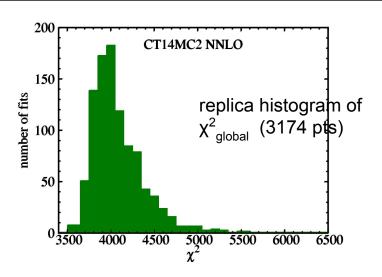
- best fit with Hessian uncertainties
- mean and standard dev. of replicas
 - o MC1 and MC2

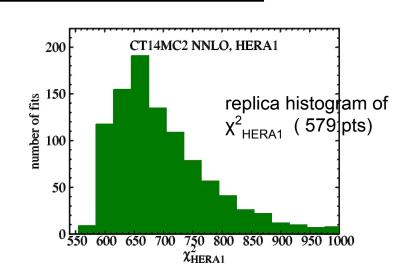




• • The *replica results* closely approximate the *Hessian results*.

Only a large ensemble of MC replicas is meaningful.





Most replicas are poor fits to the data; but the mean & SD do agree with the Hessian uncertainties.

- Availability of the CT14 MC PDFs

 http://hep.pa.msu.edu/cteq/public/
 http://lhapdf.hepforge.org
 http://metapdf.hepforge.org/mcgen

Part 2: das Ende