

b-hadron production and properties at LHCb

M. Needham
University of Edinburgh
On behalf of the LHCb collaboration

OCD@L#C

22ND-26TH AUGUST 2016
INTERNATIONAL CONFERENCE ZURICH

Outline

recent results

Impossible to present everything

in 25 minutes hence focus on more

- Quarkonia
- B_c physics
- b-hadrons
- Summary and outlook

See also related LHCb talks by

- V. Belyaev, LHCb results on associated production of heavy hadrons
- G. Cavallero, LHCb results on exotic spectroscopy
- D. Craik, LHCb results on heavy quark spectroscopy
- R. Silva Coutinho, *LHCb charm, bottom and top production in the forward region*
- C. Voss *LHCb* results on baryonic *B* decays

Introduction

LHCb Integrated Luminosity in pp collisions 2010-2016

Today results from Run 1 plus J/ψ from Run 2

Exploit excellent dimuon trigger Capabilities plus unique hadron triggering and PID

Quarkonia motivation

Colour Singlet Model at NLO known to underestimate production cross-section

• Better agreement with NNLO* calculations

NRQCD approach better agreement with data, but Long Distance Matrix Elements (LDMEs) have to be determined from the data

 Cross-sections agree with data, but predicts large transverse polarization whilst data shows small polarization

LHCb scorecard

D						
Process	2.76	5	7	8	13	
η_c cross-section						Unique To LHCb
J/ψ cross-section						10 LITCU
J/ψ polarization						Done?
ψ(2S) cross-section						Todo
ψ(2S) polarization						No?
χ_c production						
χ_b production						
$\Upsilon(nS)$ cross-section						
Y(nS) polarization						

Today J/ψ production @13TeV

J/ψ cross-section at 13 TeV

Total of $4.97 \pm 0.19 \text{ pb}^{-1} \text{ pp collision}$ data collected in early July 2015

Use new turbo trigger stream (arxiv:1604.05596)

Offline quality reconstructed candidates directly from trigger

Decrease event size, increase output rate by an order of magnitude

Take candidates selected by muon trigger lines with invariant mass consistent with J/ψ

JHEP 11 (2015) 103

J/ψ production analysis

Measure double differential cross-section

- Both prompt and J/ψ from b-hadron decay cross-sections
- Ratio of 13 and 8 TeV cross-section measurements (partially cancel out experimental and theory uncertainties)
- Estimate of b production cross-section at 13 TeV

Assume zero polarization

J/ψ fit details

Unbinned simultaneous maximum likelihood fit to $M(J/\psi)$ and tz for each bin

J/ψ cross-sections

$$p_T < 14 \,\text{GeV}/c, \, 2.0 < y < 4.5$$

$$\sigma(\text{prompt } J/\psi) = (15.30 \pm 0.03 \pm 0.86) \mu b$$
$$\sigma(J/\psi \text{ from } b) = (2.34 \pm 0.01 \pm 0.13) \mu b$$

Naïve extrapolation to 4 using Pythia 6

$$\sigma(pp \to b\bar{b}X) = 515 \pm 2 \pm 53 \,\mu b$$

J/ψ: Comparison to theory

J/ψ: Cross-section ratios

Experimental (and theory) uncertainties cancel in cross-section ratio to 8 TeV measurement [JHEP 06 (2013) 064]

Quantity	Systematic uncertainty		
Luminosity	4.6%	30% cancelled	
Trigger	1.5 %	50% cancelled	
Muon ID	2.2%		
Tracking	1%	50% cancelled	
Signal shape	2%	up to 80% cancelled for some bins	
p_{T} -y-spectrum, MC stat. (t_z fits)	1-8%		

b cross-section ratios from semi-leptonic decays

J/ψ Data/theory ratios agree well at high y, low y less well

Trend that theory underestimates increase in cross section seen in data also seen in b cross-section measurement using semi-leptonic decays

More details in talk of R. Silva Coutinho

B_c physics

Ground state is unique meson containing two heavy quarks decaying weakly

Ideal testing ground for QCD models

LHCb has had big impact in this area

- Mass from average of LHCb measurements is $6274.67 \pm 1.2 \text{ MeV/c}^2$
- Lifetime 511.4 ± 9.3 fs
- 9 new decay modes!

Today present two recent analyses

Measurement of BR(B_c⁺ \rightarrow J/ ψ K⁺)/BR(B_c⁺ \rightarrow J/ ψ π ⁺), arxiv:1607.06823

Study of B_c $^+$ \rightarrow K⁺K⁻ π ⁺ and evidence for B_c $^+$ \rightarrow χ_{c0} π ⁺ arxiv:1607.06134

For $B \rightarrow pp\pi^+$ see talk of C. Haen

Mode first observed by LHCb using 1 fb⁻¹ of data (JHEP 09 (2103) 75)

CKM suppressed b → cus transition

New update to full Run 1 dataset (3 fb⁻¹)

Normalize to $B_c^+ \rightarrow J/\psi \pi^+$

$$B_c^+ \rightarrow J/\psi K^+$$

- Simultaneous fit to signal and normalization channels
- In Run 1 3207 +/- 64 total of $B_c^+ \rightarrow J/\psi \pi^+$ candidates

Main systematic from treatment of partially reconstructed backgrounds

	$7\mathrm{TeV}$	8 TeV
Signal model	0.5%	0.8%
Combinatorial background	1.1%	0.5%
Partially reconstructed background	3.3%	3.2%
Misidentification background	0.2%	0.0%
Particle identification efficiency	0.2%	0.1%
Detector material	0.3%	0.3%
Total	3.5%	3.4%

stat syst

$$R_{K/\pi} = 0.079 \pm 0.007 \pm 0.003$$

Agrees with previous LHCb results and range of theory predictions

$$\overline{b}c \to W^+ \to u\overline{q} \ (q=d,s)$$

$$B_c^+ \to [c\bar{c}](\to h_1^+ h_1^-)h_2^+$$

For normalization use

$$B^+ \to \overline{D}^0 (\to K^+ K^-) \pi^+$$

And measure

$$R_f \equiv \frac{\sigma(B_c^+)}{\sigma(B^+)} \times \mathcal{B}(B_c^+ \to f)$$

$$B_c^+ \to B_q^0 (\to h_1^+ h_2^-) h_3^+$$

Explore interesting areas of phase space separately, starting with annihilation region

$$\overline{b}c \to W^+ \to u\overline{q} \ (q=d,s)$$

$$m(K^-\pi^+) < 1.834 \,\text{GeV}/c^2$$

To enhance sensitivity analysis is done in 3 bins of output of BDT trained to discriminate signal

$$N_c = 20.8^{+11.4}_{-9.9}$$

 2.4σ significance

Charmonium region

4.5 evidence for $B_c^+ \rightarrow \chi_{c0} \pi^+$

Systematics

$R_{\mathrm{an},KK\pi}$	$n_{\chi_{c0}\pi}$
1.3	1.3
1.6	_
2.4	2.3
5.0	2.9
1.0	1.0
0.8	0.8
0.4	0.3
2.0	2.0
1.5	1.4
0.1	0.1
3.6	6.2
7.5	7.8
	1.3 1.6 2.4 5.0 1.0 0.8 0.4 2.0 1.5 0.1 3.6

$$\frac{\sigma(B_c^+)}{\sigma(B^+)} \times \mathcal{B}(B_c^+ \to \chi_{c0}\pi^+)$$

$$(9.8^{+3.4}_{-3.0}(\mathrm{stat}) \pm 0.8(\mathrm{syst})) \times 10^{-6}$$

$$R_{{\rm an},KK\pi} < 15(17) \times 10^{-8}$$
 (Expected to be at $10^{-9} - 10^{-8}$ level)

$$R_{B_s^0\pi} \equiv \frac{\sigma(B_c^+)}{\sigma(B^+)} \times \mathcal{B}(B_c^+ \to B_s^0\pi^+) < 4.5(5.4) \times 10^{-3}$$

$$R_{D^0K} \equiv \frac{\sigma(B_c^+)}{\sigma(B^+)} \times \mathcal{B}(B_c^+ \to D^0K^+) < 1.3(1.6) \times 10^{-6}$$

b-baryons

Until LHC startup very poorly explored

Weakly decaying Λ_b , Ξ_b^- , Ω_b^- observed + strong decaying charged Σ_b

Excited Λ_b states seen by LHCb PRL. 109:172003 (2012)

Excited Ξ_b states also seen by LHCb (JHEP 05 (2016) 161), PRL 114 (2015), 062004. Neutral state seen by CMS.

Measurements of properties probe QCD

- Mass measurements probe the quark model
- Lifetime measurements test of HQET prediction $au_{\varOmega_b^-} \simeq au_{\varXi_b^-} > au_{\varXi_b^0} pprox au_{\varLambda_b^0}$

$\Lambda_b \rightarrow \psi(2S)pK^-$

JHEP 05 (2016) 132

First observation of these modes using Run 1 dataset

Channel	$N(\Lambda_b^0)$
$\Lambda_b^0 \rightarrow J/\psi p K^-$	28834 ± 204
$\Lambda_b^0 \rightarrow \psi(2S) [\rightarrow \mu^+ \mu^-] p K^-$	665 ± 28
$\Lambda_b^0 \rightarrow \psi(2S) [\rightarrow J/\psi \pi^+\pi^-]pK^-$	231 ± 17
$\Lambda_b^0 \rightarrow J/\psi \pi^+\pi^- pK^-$	793 ± 36

$\Lambda_b \rightarrow J/\psi \pi^+ \pi^- p K^-$

JHEP 05 (2016) 132

Combination of $\psi(2S)$ modes gives

$$R^{\psi(2S)} = \frac{\mathcal{B}(\Lambda_b^0 \to \psi(2S)pK^-)}{\mathcal{B}(\Lambda_b^0 \to J/\psi pK^-)} = (20.70 \pm 0.76 \pm 0.46 \pm 0.37) \times 10^{-2}$$

Excluding intermediate resonances

$$R^{J/\psi \pi^{+}\pi^{-}} = \frac{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi \pi^{+}\pi^{-}pK^{-})}{\mathcal{B}(\Lambda_{b}^{0} \to J/\psi pK^{-})} = (20.86 \pm 0.96 \pm 1.34) \times 10^{-2}$$

Also determine

$$\frac{\mathcal{B}(\psi(2S) \to \mu^{+}\mu^{-})}{\mathcal{B}(\psi(2S) \to J/\psi \pi^{+}\pi^{-})} = (2.30 \pm 0.20 \pm 0.12 \pm 0.01) \times 10^{-2}$$

Most precise direct determination of this ratio

$\Lambda_b \rightarrow J/\psi \pi^+ \pi^- p K^-$

Low Q-value of these decays allows for precision measurement of Λ_b mass

Complement with measurement using normalization mode (large dataset but higher statistics)

This gives:

$$M(\Lambda_{\rm b}^0) = 5619.65 \pm 0.17 \pm 0.17 \,{\rm MeV}/c^2$$

LHCb combination

$$M(\Lambda_{\rm b}^0) = 5619.65 \pm 0.16 \pm 0.14 \,\text{MeV}/c^2$$

Most precise direct measurement of any b-hadron mass

Ω_b^- mass and lifetime

63 +/- 9 $\Omega_b^- \rightarrow \Omega_c^0 \pi^-$ candidates observed in Run 1 data

Make relative measurement of lifetime/mass difference using the mode $\Xi_b^- \to \Xi_c^- 0 \pi^-$ as normalization

Ω_b^- mass and lifetime

Systematic uncertainties on acceptance cancel in ratio between signal and normalization

$$m_{\Omega_b^-} - m_{\Xi_b^-} = 247.3 \pm 3.2 \pm 0.5 \,\text{MeV}/c^2,$$

 $m_{\Omega_b^-} = 6045.1 \pm 3.2 \pm 0.5 \pm 0.6 \,\text{MeV}/c^2$

Consistent with previous LHCb/CDF measurements Inconsistent with D0 result

$$rac{ au_{\Omega_b^-}}{ au_{\Xi_b^-}} = 1.11 \pm 0.16 \pm 0.03,$$
 $au_{\Omega_b^-} = 1.78 \pm 0.26 \pm 0.05 \pm 0.06 \text{ ps}$

Consistent with previous measurements More data will allow precision probe of HQET

Summary + Outlook

LHCb has made wide range of measurements of quarkonia and b-hadrons

- Comprehensive set of results related to quarkonia production
- Detailed studies of B_c⁺ meson and b-baryons

A lot more to come exploiting Run 1 and large Run 2 dataset being collected now:

- Complete quarkonia program
- Further studies of b-baryon properties
- More B_c⁺ decay modes

Backup

The LHCb Detector

J/ψ selection

Trigger selection

L0: trigger on muon with high pt

HLT1: two muon candidates with high invariant mass and momenta

HLT2: Turbo stream. Mass 300 MeV window around J/ψ candidate from HLT1

Offline

Muon identification and track quality requirements

Λ_b mass

