Recent LHCb Results on Baryonic *B* Decays and *b*-Baryon Decays

Christian Voß On Behalf of the LHCb Collaboration

Universität Rostock - Institut für Physik

23rd of August 2016

Strong motivation: baryon antibaryon asymmetry in the universe

Sacharow Criteria

Motivation

- Baryon number violating processes
- C and CP violation
- Thermal non-equilibrium

Search for $B_c^- \to p\bar{p}\pi^-$

Strong motivation: baryon antibaryon asymmetry in the universe

Sacharow Criteria

- Baryon number violating processes
- C and CP violation
- Thermal non-equilibrium
 - Limited knowledge of baryon production in general
 - Prozesses violating baryon number not observed
- CP violation in baryonic decays

Strong motivation: baryon antibaryon asymmetry in the universe

Sacharow Criteria

- Baryon number violating processes
- C and CP violation
- Thermal non-equilibrium
 - Limited knowledge of baryon production in general
 - Prozesses violating baryon number not observed
 - ► CP violation in baryonic decays
 - No CP violation in the neutron decay
 - No CP violation in the Λ decay
 - Evidence for CP violation using the $\Delta A_{\rm CP}$ method in $\Lambda_b \to ph^-$
 - ► Present new evidence for CP violation today

Strong motivation: baryon antibaryon asymmetry in the universe

Sacharow Criteria

- Baryon number violating processes
- C and CP violation
- Thermal non-equilibrium
 - Limited knowledge of baryon production in general
 - Prozesses violating baryon number not observed
 - CP violation in baryonic decays
 - No CP violation in the neutron decay
 - No CP violation in the Λ decay
 - Evidence for CP violation using the $\Delta A_{\rm CP}$ method in $\Lambda_b \to ph^-$
 - Present new evidence for CP violation today

An open field of research

→ concentrate on production and CP violation

QCD and Baryons

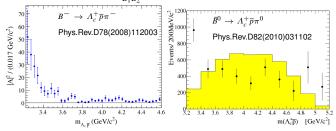
There are two phases for baryon production

- ▶ Produced at very large scales → Quark-Gluon-Plasma
- Produced in weak decays at lower scales

Argus Measurement (Z.Phys.C56:1-6,1992)

$$\mathcal{B}(B \rightarrow \text{baryons}) = (6.8 \pm 0.5 \text{ (stat)} \pm 0.3 \text{ (syst)})\%$$

- B decays allow to study baryon production at low jet energies
- ▶ Realm of non-perturbative QCD → Help theorists to develop and test different models
- ▶ High statistics of the *B* Factories and LHC*b* also allow to search for very rare decays → Search for baryon number violation

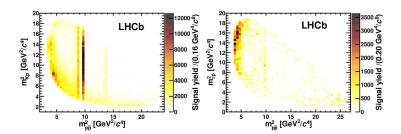

Baryonic B Decays

▶ Hierarchy in baryonic B decays $(\bar{B}^0/B^+ \to \Lambda_c^+ \bar{p}(n \times \pi))$ decays)

$$\mathcal{B}(2 - \text{body}) \ll \mathcal{B}(3 - \text{body}) < \mathcal{B}(4 - \text{body}) \approx \mathcal{B}(5 - \text{body})$$

Search for $B_c^- \to p\bar{p}\pi^-$

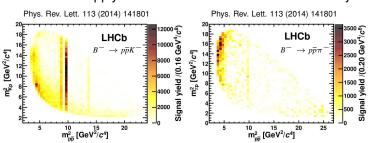
- Different dynamics compared to mesonic Bdecays
 - Enhancement at the m_{B1B2} threshold



- Seen in many decays: $\bar{B}^0 \to D^0 p \bar{p}, B^- \to p \bar{p} h^-, \bar{B}^0 \to \Lambda \bar{p} \pi^-, e^+ e^- \to \gamma \Lambda \bar{\Lambda}, J/\psi \to \gamma p \bar{p}$
- Expand research to \bar{B}^0_s and B^-_s mesons

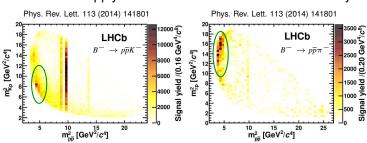
Search for $B_c^- o p \overline{p} \pi^-$

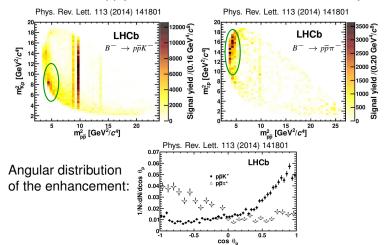
Search for $B_c^- \to p\bar{p}\pi^-$


▶ Baryonic B_c^+ decays are an untouched field of research (inaccessible to BABAR and Belle)

Motivation

Search for $B_c^- \to p \bar{p} \pi^-$


- Baryonic B_c^+ decays are an untouched field of research (inaccessible to BABAR and Belle)
- Allows to apply what we learned from \bar{B}^0 and B^- decays


Search for $B_c^- o p \overline{p} \pi^-$

Search for $B_c^- \to p\bar{p}\pi^-$

- Baryonic B_c^+ decays are an untouched field of research (inaccessible to BABAR and Belle)
- Allows to apply what we learned from \bar{B}^0 and B^- decays

- ▶ Baryonic B⁺_c decays are an untouched field of research (inaccessible to BABAR and Belle)
- ▶ Allows to apply what we learned from \bar{B}^0 and B^- decays

Beauty Baryons

Search for $B_c^- \to p\bar{p}\pi^-$

- ► Largely undeveloped field of research
- Experimental surge since the start of LHCb
- Unfortunately far ahead of theory
- Theorists more interest in fundamental things

Beauty Baryons

Search for $B_c^- \to p\bar{p}\pi^-$

- Largely undeveloped field of research
- ► Experimental surge since the start of LHCb
- Unfortunately far ahead of theory
- Theorists more interest in fundamental things

Focus on CPV and branching fractions

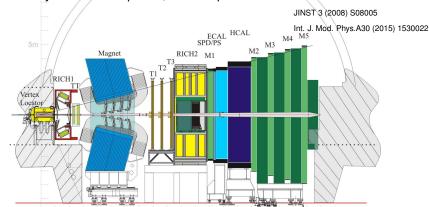
- Recent LHCb analyses
 - Branching fraction for $\Lambda_b^0 \to \Lambda \phi$ (Phys. Lett. B 759 (2016) 282)
 - Branching fraction for $\Lambda_h^0 \to \Lambda h_1^+ h_2^-$ (JHEP 05 (2016) 081)
 - CP violation in $\Lambda_h^0 \to p\pi^- h_1^+ h_2^-$ (LHCB-PAPER-2016-030-001)

External Effects

- ▶ Treatment of the hadronisation probabilities f_{Λ_L} and f_{Ξ_L}
- Lack of absolute branching fractions
- Limited knowledge of intermediate states

```
\Delta and N resonances in m(p\pi)
\Lambda^* and \Sigma^{0^*} resonances in m(pK) and m(\Lambda\pi)
```

- Treatment of these resonances in Dalitz plot analyses
- Treatment of fermions in Dalitz plot analyses
- Fermion in the initial state


$$\mathrm{d}\Gamma \propto |\mathcal{M}|^2 \mathrm{d}m_{12}^2 \mathrm{d}m_{23}^2 \mathrm{d}\Omega_2 \mathrm{d}\phi_{23}$$

 Implies five dimensional phase-space, two invariant masses and three angles

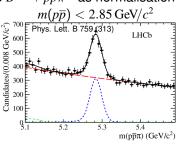
A lot of new things to learn!

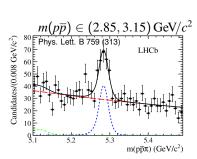
LHCb -Detector

- ► LHCb-spectrometer at the LHC
- Rare decays of b and c quarks, and τ leptons

- Analyses presented make use of the Run-I data (3 fb
- corresponds to about $20 \times 10^9 \Lambda_b$ baryons)

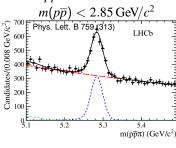
Motivation

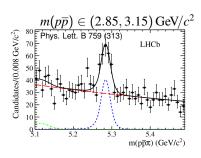

Search for $B_c^- o p \bar p \pi^-$


Search for $B_c^- o p\overline{p}\pi^-$

Analysis Strategy

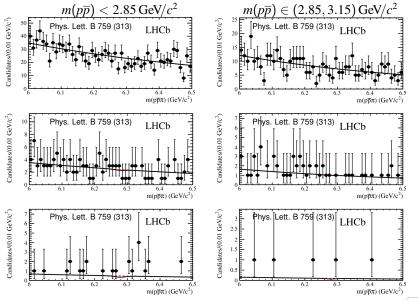
Search for $B_c^- \to p\bar{p}\pi^-$


Use $B^- \to p \overline{p} \pi^-$ as normalisation



Analysis Strategy

Use $B^- \to p \overline{p} \pi^-$ as normalisation



Determine

$$rac{f_c}{f_u}\mathcal{B}(B_c^- o p\overline{p}\pi^-) = rac{N(B_c^- o p\overline{p}\pi^-)}{N(B^- o p\overline{p}\pi^-)} imesrac{arepsilon_u}{arepsilon_c} imes \mathcal{B}(B^- o p\overline{p}\pi^-)$$

- ▶ Limit to the enhancement region and J/ψ region as cross check
- ▶ PID and BDT selection making use of topological variables
- ► Simultaneous fit in three BDT regions with similar expected yields

Results for the Run-I Data

Analysis published in Phys. Lett. B 759 (313)

Upper Limits

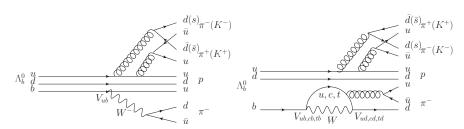
► Enhancement region

$$\frac{f_c}{f_u} \times \mathcal{B}(B_c^- \to p\bar{p}\pi^-) < 3.6 \times 10^{-8} \text{ @95\%CL}.$$

► J/ψ control region accounting for $\mathcal{B}(J/\psi \to p\overline{p})$

$$\frac{f_c}{f_u} \times \mathcal{B}(B_c^- \to J/\psi \pi^-) < 8.6 \times 10^{-6} \text{ @95\%CL}.$$

- First search for $b\bar{c}$ annihilation into a baryonic final state
- ► Limits on the J/ψ region in agreement with the previous measurement (Phys. Rev. Lett. 114 (2015) 132001)


$$\frac{f_c}{f_u} \times \mathcal{B}(B_c^- \to J/\psi \pi^-) = (7.0 \pm 0.3) \times 10^{-6}$$

Motivation

Search for CPV in $\Lambda_h^0 \to p\pi^- h_1^+ h_2^-$

Physics of $\Lambda_b \to p \pi^- h_1^+ h_2^-$ decays

- ▶ Inference of a $b \rightarrow u$ tree and a $b \rightarrow d$ penguin amplitude
- Interference is proportional to \(\gamma \)
- ▶ Amplitude $A(b \rightarrow d) < A(b \rightarrow s)$ →larger interference effect

CPV in
$$\varLambda_b^0 \to p \pi^- \pi^+ \pi^-$$
 and $\varLambda_b^0 \to p \pi^- K^- K^+$

- Several methods of measuring direct P, T, and CP violation
- Scalar Triple Products allow study all three symmetries

$\overrightarrow{\text{CPV in } \Lambda_h^0} ightarrow p\pi^-\pi^+\pi^- \text{ and } \Lambda_h^0 ightarrow p\pi^-K^-K^+$

- Several methods of measuring direct P, T, and CP violation
- Scalar Triple Products allow study all three symmetries

Use Triple Products to Measure P Violation

Measure the expectation value of P-odd observables

$$\mathcal{O} = \boldsymbol{p}_1 \cdot (\boldsymbol{p}_2 \times \boldsymbol{p}_3)$$
 with $T\boldsymbol{p} = -\boldsymbol{p}, P\boldsymbol{p} = -\boldsymbol{p}$

- A non-vanishing expectation value is evidence for P and T violation
- Experimentally easy to access

CPV in
$$\varLambda_b^0 \to p \pi^- \pi^+ \pi^-$$
 and $\varLambda_b^0 \to p \pi^- K^- K^+$

- Several methods of measuring direct P, T, and CP violation
- Scalar Triple Products allow study all three symmetries

Use Triple Products to Measure T and CP Violation

Measure instead the T-odd observable

$$\mathcal{O} = \mathbf{s}_1 \cdot (\mathbf{p}_1 \times \mathbf{p}_2)$$
 with $T\mathbf{s} = -\mathbf{s}, P\mathbf{s} = +\mathbf{s}$

- ► A non-vanishing expectation value is an evidence for T violation
- ▶ Not sensitive to Parity violation Ps = +s
- Experimentally difficult to access

CPV in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ and $\Lambda_b^0 \to p\pi^-K^-K^+$

- Several methods of measuring direct P, T, and CP violation
- Scalar Triple Products allow study all three symmetries

Use Triple Products to Measure P Violation

Measure the expectation value of P-odd observables

$$\mathcal{O} = \mathbf{p}_1 \cdot (\mathbf{p}_2 \times \mathbf{p}_3)$$
 with $T\mathbf{p} = -\mathbf{p}, P\mathbf{p} = -\mathbf{p}$

- A non-vanishing expectation value is evidence for P and T violation
- Experimentally easy to access
- Goal is to search for CP violation:

$$\mathcal{O} = \boldsymbol{p}_p \cdot (\boldsymbol{p}_{h_1^+} \times \boldsymbol{p}_{h_2^-})$$
 with $h_1 = h_2 = \pi$ and $h_1 = \pi, h_2 = K$

Pion ambiguity solved by choosing the higher momentum pion

Search for $B_c^- \to p\bar{p}\pi^-$

Use the Triple Product $\mathcal{O} = p_p \cdot (p_{h_1^+} \times p_{h_2^-})$

Determine the asymmetry

$$A_T = \frac{N(\mathcal{O} > 0) - N(\mathcal{O} < 0)}{N(\mathcal{O} > 0) + N(\mathcal{O} < 0)}$$

Search for $B_c^- \to p\bar{p}\pi^-$

Use the Triple Product $\mathcal{O} = p_p \cdot (p_{h_1^+} \times p_{h_2^-})$

Determine the asymmetry

$$A_T = \frac{N(\mathcal{O} > 0) - N(\mathcal{O} < 0)}{N(\mathcal{O} > 0) + N(\mathcal{O} < 0)}$$

- Final state interaction (FSI) can fake CP violation
 - → FSI is a systematic effect in these searches

Search for $B_c^- \to p\bar{p}\pi^-$

Use the Triple Product $\mathcal{O} = p_p \cdot (p_{h_+^+} \times p_{h_-^-})$

Determine the asymmetry

$$A_T = \frac{N(\mathcal{O} > 0) - N(\mathcal{O} < 0)}{N(\mathcal{O} > 0) + N(\mathcal{O} < 0)}$$

- Final state interaction (FSI) can fake CP violation → FSI is a systematic effect in these searches
- ► FSI from QCD is CP invariant (additional assumption) \rightarrow Compare Λ_h^0 and $\overline{\Lambda}_h^0$ decays

Use the Triple Product $\mathcal{O} = p_p \cdot (p_{h_1^+} \times p_{h_2^-})$

► Determine the asymmetry

$$A_T = \frac{N(\mathcal{O} > 0) - N(\mathcal{O} < 0)}{N(\mathcal{O} > 0) + N(\mathcal{O} < 0)}$$

- Final state interaction (FSI) can fake CP violation
 → FSI is a systematic effect in these searches
- ► FSI from QCD is CP invariant (additional assumption) → Compare Λ_b^0 and $\overline{\Lambda}_b^0$ decays

$$A_{T} = \frac{N\left(\mathcal{O} > 0\right) - N\left(\mathcal{O} < 0\right)}{N\left(\mathcal{O} > 0\right) + N\left(\mathcal{O} < 0\right)} \quad \bar{A}_{T} = \frac{\bar{N}\left(-\bar{\mathcal{O}} > 0\right) - \bar{N}\left(-\bar{\mathcal{O}} < 0\right)}{\bar{N}\left(-\bar{\mathcal{O}} > 0\right) + \bar{N}\left(-\bar{\mathcal{O}} < 0\right)}$$

$$a_{T-\text{odd}}^{\text{P}} = \frac{1}{2}(A_{T} + \bar{A}_{T})$$

$$a_{T-\text{odd}}^{\text{CP}} = \frac{1}{2}(A_{T} - \bar{A}_{T}) \propto \sin\phi_{\text{weak}} \cos\delta_{\text{strong}}$$

Use the Triple Product $\mathcal{O} = p_p \cdot (p_{h_1^+} \times p_{h_2^-})$

► Determine the asymmetry

$$A_T = \frac{N(\mathcal{O} > 0) - N(\mathcal{O} < 0)}{N(\mathcal{O} > 0) + N(\mathcal{O} < 0)}$$

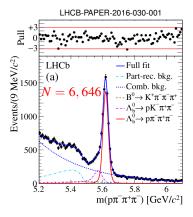
- ► Final state interaction (FSI) can fake CP violation

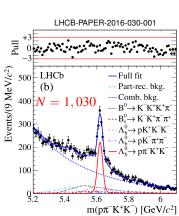
 → FSI is a systematic effect in these searches
- ► FSI from QCD is CP invariant (additional assumption) \rightarrow Compare A_b^0 and \overline{A}_b^0 decays

$$\begin{split} A_T &= \frac{N\left(\mathcal{O}>0\right) - N\left(\mathcal{O}<0\right)}{N\left(\mathcal{O}>0\right) + N\left(\mathcal{O}<0\right)} \quad \bar{A}_T = \frac{\bar{N}\left(-\bar{\mathcal{O}}>0\right) - \bar{N}\left(-\bar{\mathcal{O}}<0\right)}{\bar{N}\left(-\bar{\mathcal{O}}>0\right) + \bar{N}\left(-\bar{\mathcal{O}}<0\right)} \\ a_{T-\mathrm{odd}}^\mathrm{P} &= {}^{1}\!/{2}(A_T + \bar{A}_T) \\ a_{T-\mathrm{odd}}^\mathrm{CP} &= {}^{1}\!/{2}(A_T - \bar{A}_T) \propto \sin\phi_{\mathrm{weak}}\cos\delta_{\mathrm{strong}} \end{split}$$

- $\mathcal{A}_{T-\mathrm{odd}}^{\mathrm{CP}}$ is maximal in the vanishing limit of δ_{strong}
- ► All variables are largely insensitive to production and detector induced asymmetries

Motivation


Search for $B_c^- \to p\bar{p}\pi^-$


- Split the data into additional four sets
 - $(\Lambda_h^0, \mathcal{O} > 0), (\Lambda_h^0, \mathcal{O} < 0), (\overline{\Lambda}_h^0, \overline{\mathcal{O}} > 0), (\overline{\Lambda}_h^0, \overline{\mathcal{O}} < 0)$
 - Fit for the asymmetry by modifying the individual yields
- Decay modes until now unobserved

Motivation

Search for $B_c^- \to p\bar{p}\pi^-$

- Split the data into additional four sets
 - $(\Lambda_h^0, \mathcal{O} > 0), (\Lambda_h^0, \mathcal{O} < 0), (\overline{\Lambda}_h^0, \overline{\mathcal{O}} > 0), (\overline{\Lambda}_h^0, \overline{\mathcal{O}} < 0)$
 - Fit for the asymmetry by modifying the individual yields
- Decay modes observed for the first time

Results for $\mathcal{A}_{T-\mathrm{odd}}^{\mathrm{CP}}$ and $\mathcal{A}_{T-\mathrm{odd}}^{\mathrm{P}}$

Search for $B_c^- \to p\bar{p}\pi^-$

Results for the global fit

Global asymmetries consistent with neither CP nor P violation

Results for $\mathcal{A}_{T-\mathrm{odd}}^{\mathrm{CP}}$ and $\mathcal{A}_{T-\mathrm{odd}}^{\mathrm{P}}$

► Results for the global fit

$$\begin{array}{c|c|c} A_b^0 \ \text{decay} & a_{T-\text{odd}}^{\text{CP}} \ [\%] & a_{T-\text{odd}}^{\text{P}} \ [\%] \\ \hline p\pi^-\pi^+\pi^- & -1.15 \pm 1.45 \pm 0.32 & -3.71 \pm 1.45 \pm 0.32 \\ p\pi^-K^+K^- & -0.93 \pm 4.54 \pm 0.42 & -3.62 \pm 4.54 \pm 0.42 \\ \end{array}$$

- Global asymmetries consistent with neither CP nor P violation
- ▶ Larger $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ statistics allow further studies
- ► CP violation often dependent on resonances in the phase space

Results for $\mathcal{A}_{T-\text{odd}}^{\text{CP}}$ and $\mathcal{A}_{T-\text{odd}}^{\text{P}}$

Search for $B_c^- \to p\bar{p}\pi^-$

Results for the global fit

Λ_b^0 decay	$a_{T-\mathrm{odd}}^{\mathrm{CP}}$ [%]	$a_{T-\mathrm{odd}}^{\mathrm{P}}$ [%]
	$ \begin{vmatrix} -1.15 \pm 1.45 \pm 0.32 \\ -0.93 \pm 4.54 \pm 0.42 \end{vmatrix} $	

- Global asymmetries consistent with neither CP nor P violation
- ► Larger $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ statistics allow further studies
- CP violation often dependent on resonances in the phase space
- Introduce two binning schemes

Phase space Binning scheme chosen to reflecting known resonances

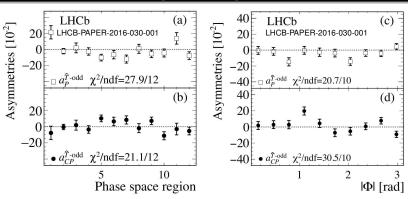
Angle between decay planes Φ Binning scheme depending on the relative angle between the the $p\pi^{-}_{\text{fast}}$ and $\pi^+\pi^-_{\text{slow}}$ decay planes

Phase Space Binning

Search for $B_c^- \to p\bar{p}\pi^-$

- Making use of a 5D phase space
- Define twelve bins describing
 - The $\Delta^{++}(1232) \to p\pi^+$ region in four bins
 - Left and right hand side of the Δ peak
 - Separate two Φ intervals $(0, \pi/2), (\pi/2, \pi)$
 - Nucleon resonances $N^* \to p\pi^-_{\rm slow}$ and $\rho \to \pi^+\pi^-_{\rm slow/fast}$
 - $m(p\pi^{+}) > m(\Delta^{++})$
 - Separate $m(p\pi^-_{slow})$ at $2 \text{ GeV}/c^2$ since $m(N^*) < 2 \text{ GeV}/c^2$
 - Pion pair compatible with ρ hypothesis and above
 - Each separated into two Φ intervals $(0, \pi/2), (\pi/2, \pi)$
- Binning depending on the angle Φ integrating over the invariant masses

Angular Binning



Chosen Binning

LHCbExperimental

$$\left(\frac{i-1}{10}\pi, \frac{i}{10}\pi\right) \quad \text{with} \quad i = 1, 2, \dots, 10$$

Phase Space Dependence

- ► CP violation determined by several global χ^2 tests against the CP conservation hypothesis
- ► Combined statistical significance against CP conservation

$$S = 3.3\sigma$$

Results for the Run-i data

Observation of two $\Lambda_b^0 \to p \pi^- h_1^+ h_2^-$ modes

▶ Observation of $\Lambda_b^0 \to p \pi^- \pi^+ \pi^-$ and $\Lambda_b^0 \to p \pi^- K^- K^+$

$$N(\Lambda_b^0 \to p\pi^-\pi^+\pi^-) = 6,646$$

 $N(\Lambda_b^0 \to p\pi^-K^-K^+) = 1,030$

Next step: determination of the branching fractions

Evidence for CP violation in $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$

- ► Using triple products no phase space integrated CP violation
- ▶ Phase space dependent CP violation of $S = 3.3\sigma$
- ► No local or global evidence for parity violation

Evidence for CP violation in $\Lambda_h^0 \to p\pi^-K^+K^-$

► No local or global evidence for P or CP violation

Conclusions

Small overview of the LHCb activities in this field of research.

Search for $B_c^- \to p\overline{p}\pi^-$

$$\frac{f_c}{f_u} \times \mathcal{B}(B_c^- \to p\bar{p}\pi^-) < 3.6 \times 10^{-8} \text{ @95\%CL}.$$

Search for CP violation in $\Lambda_h^0 \to p\pi^- h_1^+ h_2^-$ decays

- ▶ Observation of $\Lambda_b^0 \to p\pi^-\pi^+\pi^-$ and $\Lambda_b^0 \to p\pi^-K^+K^-$
- ▶ Phase space dependent CP violation for $\Lambda_h^0 \to p\pi^-\pi^+\pi^-$

$$S = 3.3\sigma$$

- Update using the Run-II data as soon as possible
- ► A lot of interesting analyses in the pipeline

Thank you for your attention