Heavy Quark Spectroscopy at LHCb

Daniel Craik

University of Edinburgh

23rd August, 2016

on behalf of the LHCb Collaboration

Outline

- Wide range of heavy quark spectroscopy analyses performed at LHCb
- Talk will focus on most recent results
 - Search for Ξ_b^{**0} resonances
 - $p\overline{p}$ spectroscopy using $B^+ \to p\overline{p}K^+$ decays (NEW)
 - D_s^+ spectroscopy in inclusive D^*K
 - D^{0} spectroscopy from $B^{-} \rightarrow D^{+}\pi^{-}\pi^{-}$ decays (NEW!
- All results based on analyses of full Run I dataset (3 fb⁻¹)
- Exotics covered in a separate talk (Giovanni up next)

The LHCb Detector

- Instrumentation in the forward region $(2 < \eta < 5)$
- Excellent vertex reconstruction
- Precise tracking before and after magnet
- Good PID separation up to ~ 100 GeV/c

Int. J. Mod. Phys. A 30 (2015) 1530022

SU(3) flavour multiplets of singly-heavy baryons. Q denotes the heavy flavour, $\alpha + n$ denotes the baryon's charge.

• \equiv_Q baryons contain a heavy quark (*b*,*c*), a strange quark (*s*) and another light quark (*u*,*d*)

- \equiv_Q baryons contain a heavy quark (*b*,*c*), a strange quark (*s*) and another light quark (*u*,*d*)
- \equiv_b^0 ground state has $J^P = \frac{1}{2}^+$, b(su): \uparrow ($\uparrow\downarrow$)

- \equiv_Q baryons contain a heavy quark (*b*,*c*), a strange quark (*s*) and another light quark (*u*,*d*)
- \equiv_b^0 ground state has $J^P = \frac{1}{2}^+$, b(su): $\uparrow (\uparrow\downarrow)$

•
$$\Xi_b^{\prime 0}$$
 has $J^P = \frac{1}{2}^+$, $b(su): \downarrow (\uparrow\uparrow)$

- \equiv_Q baryons contain a heavy quark (*b*,*c*), a strange quark (*s*) and another light quark (*u*,*d*)
- \equiv_b^0 ground state has $J^P = \frac{1}{2}^+$, $b(su): \uparrow (\uparrow\downarrow)$

•
$$\Xi_b^{\prime 0}$$
 has $J^P = \frac{1}{2}^+$, $b(su)$: $\downarrow (\uparrow\uparrow)$

•
$$\Xi_b^{*0}$$
 has $J^P = \frac{3}{2}^+$, $b(su)$: \uparrow ($\uparrow\uparrow$)

SU(3) flavour multiplets of singly-heavy baryons. Q denotes the heavy flavour, $\alpha + n$ denotes the baryon's charge.

- \equiv_Q baryons contain a heavy quark (*b*,*c*), a strange quark (*s*) and another light quark (*u*,*d*)
- \equiv_b^0 ground state has $J^P = \frac{1}{2}^+$, b(su): \uparrow ($\uparrow\downarrow$)
- $\Xi_b^{\prime 0}$ has $J^P = \frac{1}{2}^+$, $b(su): \downarrow (\uparrow\uparrow)$
- Ξ_b^{*0} has $J^P = \frac{3}{2}^+$, b(su): \uparrow ($\uparrow\uparrow$)
- $\Xi_b^{*0}
 ightarrow \Xi_b^- \pi^+$ seen by CMS (left)

•
$$\Xi_b^{\prime 0}
ightarrow \Xi_b^- \pi^+$$
 not seen

assumed below threshold

- \equiv_Q baryons contain a heavy quark (*b*,*c*), a strange quark (*s*) and another light quark (*u*,*d*)
- \equiv_b^0 ground state has $J^P = \frac{1}{2}^+$, b(su): \uparrow ($\uparrow\downarrow$)
- $\Xi_b^{\prime 0}$ has $J^P = \frac{1}{2}^+$, b(su): $\downarrow (\uparrow\uparrow)$
- Ξ_b^{*0} has $J^P = \frac{3}{2}^+$, b(su): \uparrow ($\uparrow\uparrow$)
- $\Xi_b^{*0}
 ightarrow \Xi_b^- \pi^+$ seen by CMS (left)

•
$$\Xi_b^{\prime 0}
ightarrow \Xi_b^- \pi^+$$
 not seen

- assumed below threshold
- Analogous states in Ξ^{**−}_b both seen to decay to Ξ⁰_bπ[−] by LHCb (right)

resonances

JHEP 05 (2016) 161

SU(3) flavour multiplets of singly-heavy baryons. Q denotes the heavy flavour, $\alpha + n$ denotes the baryon's charge.

- Ξ_{Ω} baryons contain a heavy quark (b,c), a strange quark (s) and another light quark (u,d)
- Ξ_{h}^{0} ground state has $J^{P} = \frac{1}{2}^{+}$, $b(su): \uparrow (\uparrow\downarrow)$
- $\Xi_{h}^{\prime 0}$ has $J^{P} = \frac{1}{2}^{+}$, $b(su): \downarrow (\uparrow\uparrow)$
- Ξ_{h}^{*0} has $J^{P} = \frac{3}{2}^{+}$, b(su): $\uparrow (\uparrow\uparrow)$
- $\Xi_{b}^{*0} \rightarrow \Xi_{b}^{-} \pi^{+}$ seen by CMS (left)

•
$$\Xi_b^{\prime 0}
ightarrow \Xi_b^- \pi^+$$
 not seen

- assumed below threshold
- Analogous states in Ξ_{h}^{**-} both seen to decay to $\Xi_{b}^{0}\pi^{-}$ by LHCb (right)
- Search for $\Xi_{h}^{**0} \rightarrow \Xi_{h}^{-}\pi^{+}$ performed at LHCb

Heavy Quark Spectroscopy at LHCb

Daniel Craik

•
$$\equiv_{b}^{-}$$
 candidates reconstructed from
 $\equiv_{b}^{-} \rightarrow \equiv_{c}^{0} \pi^{-}, \equiv_{c}^{0} \rightarrow pK^{-}K^{-}\pi^{+}$ decay chain

- Ξ_b^- candidates reconstructed from $\Xi_b^- \to \Xi_c^0 \pi^-, \Xi_c^0 \to p K^- K^- \pi^+$ decay chain
- Pure samples of Ξ⁰_c (top) and Ξ[−]_b (middle) mesons obtained

- Ξ_b^- candidates reconstructed from $\Xi_b^- \to \Xi_c^0 \pi^-, \Xi_c^0 \to p K^- K^- \pi^+$ decay chain
- Pure samples of Ξ⁰_c (top) and Ξ[−]_b (middle) mesons obtained
- Ξ_b⁻ combined with π⁺ to give Ξ_b^{*0} candidates (bottom)

- Ξ_b^- candidates reconstructed from $\Xi_b^- \to \Xi_c^0 \pi^-, \Xi_c^0 \to p K^- K^- \pi^+$ decay chain
- Pure samples of Ξ⁰_c (top) and Ξ[−]_b (middle) mesons obtained
- Ξ_b^- combined with π^+ to give Ξ_b^{*0} candidates (bottom)
- Estimate combinatorial background from "wrong-sign" Ξ_b⁻π⁻ candidates

- Ξ_b^- candidates reconstructed from $\Xi_b^- \to \Xi_c^0 \pi^-, \Xi_c^0 \to p K^- K^- \pi^+$ decay chain
- Pure samples of Ξ⁰_c (top) and Ξ[−]_b (middle) mesons obtained
- Ξ_b^- combined with π^+ to give Ξ_b^{*0} candidates (bottom)
- Estimate combinatorial background from "wrong-sign" Ξ⁻_b π⁻ candidates
- Single peak seen in "right-sign" data

- Mass and width obtained from a fit to data
- Signal shape inconsistent with a natural width of zero
 - not well described by resolution effects alone
- Confirms observation by CMS
- Improved measurement of mass and first measurement of width

$$\begin{array}{rcl} m(\Xi_b^{*0}) - m(\Xi_b^{-}) - m(\pi^+) &=& 15.727 \pm 0.068(\text{stat.}) \pm 0.023(\text{syst.}) \, \text{MeV}/c^2 \,, \\ \Gamma(\Xi_b^{*0}) &=& 0.90 \pm 0.16(\text{stat.}) \pm 0.08(\text{syst.}) \, \text{MeV} \,. \end{array}$$

- Measure production rate relative to Ξ[−]_b
- Common selection for inclusive and exclusive modes to reduce systematic uncertainties
- Ratio extracted from fits to both modes (left)

$$\frac{\sigma(pp \to \Xi_b^{*0} X) \times \mathcal{B}(\Xi_b^{*0} \to \Xi_b^{-} \pi^+)}{\sigma(pp \to \Xi_b^{-} X)} = 0.28 \pm 0.03 \text{(stat.)} \pm 0.01 \text{(syst.)}$$

$\eta_{c}(2S) ightarrow ho\overline{ ho}$

- Onia an excellent environment to test QCD
- Study of charmonium decays to pp at LHCb
- Performed using large clean sample of $B^+
 ightarrow p\overline{p}K^+$ decays
- Exclusive study offers better control of background and resolution effects
- Fit performed to background-subtracted pp invariant mass (bottom)
 - weights obtained from fit to m(ppK⁺) (top)

arXiv:1607.06446

NEW!

$\eta_c(2S) o p\overline{p}$

• Known contributions from $\eta_c(1S)$, J/ψ , χ_{c0} , χ_{c1} and $\psi(2S)$

NEW!

• Search for $\eta_c(2S)$, $\psi(3770)$ and X(3872)

$\eta_c(2S) o p\overline{p}$

• Known contributions from $\eta_c(1S)$, J/ψ , χ_{c0} , χ_{c1} and $\psi(2S)$

NEW!

• Search for $\eta_c(2S)$, $\psi(3770)$ and X(3872)

• First observation of $\eta_c(2S) \rightarrow p\overline{p}$

$\eta_{c}(2S) ightarrow p\overline{p}$

• Known contributions from $\eta_c(1S)$, J/ψ , χ_{c0} , χ_{c1} and $\psi(2S)$

NEW!

• Search for $\eta_c(2S)$, $\psi(3770)$ and X(3872)

- First observation of $\eta_c(2S) \rightarrow p\overline{p}$
- Limits set on ψ (3770) and X(3872)

$\eta_c(2S) o p\overline{p}$

• Product branching fractions measured relative to J/ψ

NEW!

•
$$\mathcal{R}_{[c\bar{c}]} = \frac{\mathcal{B}(B^+ \to [c\bar{c}]K^+) \times \mathcal{B}([c\bar{c}] \to p\bar{p})}{\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to p\bar{p})}$$

 Also measure masses of η_c resonances relative to corresponding ψ resonances and width of η_c(1S)

$$\begin{array}{lll} \mathcal{R}_{\eta_c(2S)} &=& (1.58\pm 0.33({\rm stat.})\pm 0.09({\rm syst.}))\times 10^{-2}\,, \\ \\ \mathcal{R}_{\psi(3770)} &<& 9(10)\times 10^{-2}\,, \\ \\ \mathcal{R}_{X(3872)} &<& 0.20(0.25)\times 10^{-2}\,, \end{array}$$

at the 90 % (95 %) confidence level

$$\begin{array}{lll} m(J/\psi\,) - m(\eta_c(1\mathrm{S})) &=& 110.2 \pm 0.5(\mathrm{stat.}) \pm 0.9(\mathrm{syst.})\,\mathrm{MeV}/c^2\,,\\ m(\psi(2\mathrm{S})) - m(\eta_c(2\mathrm{S})) &=& 52.5 \pm 1.7(\mathrm{stat.}) \pm 0.6(\mathrm{syst.})\,\mathrm{MeV}/c^2\,,\\ \Gamma(\eta_c(1\mathrm{S})) &=& 34.0 \pm 1.9(\mathrm{stat.}) \pm 1.3(\mathrm{syst.})\,\mathrm{MeV} \end{array}$$

JHEP 02 (2016) 133

theory predictions from

- Meson spectroscopy tests refine models of QCD
- D⁺_s mesons particularly interesting with one heavy and one light quark

- Meson spectroscopy tests refine models of QCD
- D⁺_s mesons particularly interesting with one heavy and one light quark
- Unexpected large mass splitting seen between the 1P states PRL 90 (2003) 242001

- Meson spectroscopy tests refine models of QCD
- D⁺_s mesons particularly interesting with one heavy and one light quark
- Unexpected large mass splitting seen between the 1P states PRL 90 (2003) 242001
- Two states recently observed by LHCb considered two of the four 1D states

theory predictions from

$D_{\rm s}^+$ Spectroscopy

- Meson spectroscopy tests refine models of QCD
- D_{s}^{+} mesons particularly interesting with one heavy and one light quark
- Unexpected large mass splitting seen between the 1P states PRL 90 (2003) 242001
- Two states recently observed by LHCb considered two of the four 1D states PRL 113 (2014) 162001
- At least three more states expected up to $3 \,\text{GeV}/c^2$
 - all with unnatural J^P

Mass (MeV/c²) 3200 3000 2800 2600 2400 2200 2000 1800 1600 ${}^{1}S_{0} {}^{3}S_{1} {}^{3}P_{0} {}^{P}_{1} {}^{3}P_{2} {}^{3}D_{1} {}^{D}_{2} {}^{3}D_{3} {}^{3}F_{2} {}^{F}_{3} {}^{3}F_{4}$ $0^{-} 1^{-} 0^{+} 1^{+} 2^{+} 1^{-} 2^{-} 3^{-} 2^{+} 3^{+} 4^{+}$ $D_{s0}^{*}(2317)$ D* (2860 D_{c1} (2460) D_{s1} (2536)

theory predictions from

3400

JHEP 02 (2016) 133

 $D_{c2}^{*}(2573)$

D_e (3040

 $D_{c1}^{*}(2700)$

D*2 (2860

JHEP 02 (2016) 133

• Inclusive analysis of $pp \rightarrow D^{*+}K^0_{
m s}X$ and $D^{*0}K^+X$ decays

- Inclusive analysis of $pp \rightarrow D^{*+}K^0_s X$ and $D^{*0}K^+X$ decays
- Use $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ (shown) or $K^- \pi^+ \pi^+ \pi^$ and $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ decay chains

- Inclusive analysis of $pp \rightarrow D^{*+}K^0_s X$ and $D^{*0}K^+X$ decays
- Use $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ (shown) or $K^- \pi^+ \pi^+ \pi^$ and $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ decay chains
- Builds on previous analyses of D^0K^+

- Inclusive analysis of $pp \rightarrow D^{*+}K^0_s X$ and $D^{*0}K^+X$ decays
- Use $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ (shown) or $K^- \pi^+ \pi^+ \pi^$ and $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ decay chains
- Builds on previous analyses of D^0K^+
- Access to natural (NP) and unnatural (UP) spin-parities

- Inclusive analysis of $pp \rightarrow D^{*+}K^0_s X$ and $D^{*0}K^+X$ decays
- Use $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ (shown) or $K^- \pi^+ \pi^+ \pi^$ and $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ decay chains
- Builds on previous analyses of D^0K^+
- Access to natural (NP) and unnatural (UP) spin-parities
- Plots show (a) $|\cos \theta_H| < 0.5$ and (b) > 0.5 to emphasise NP and UP components
 - Resonant contributions seen due to $D_{s1}(2536)^+$, $D_{s2}^*(2573)^+$, $D_{s1}^*(2700)^+$ and $D_{s3}^*(2860)^+$ resonances

- Inclusive analysis of $pp \rightarrow D^{*+}K^0_s X$ and $D^{*0}K^+X$ decays
- Use $D^{*+} \rightarrow D^0 \pi^+$, $D^0 \rightarrow K^- \pi^+$ (shown) or $K^- \pi^+ \pi^+ \pi^$ and $D^{*0} \rightarrow D^0 \pi^0$, $D^0 \rightarrow K^- \pi^+$ decay chains
- Builds on previous analyses of D^0K^+
- Access to natural (NP) and unnatural (UP) spin-parities
- Plots show (a) $|\cos \theta_H| < 0.5$ and (b) > 0.5 to emphasise NP and UP components
 - Resonant contributions seen due to $D_{s1}(2536)^+$, $D_{s2}^*(2573)^+$, $D_{s1}^*(2700)^+$ and $D_{s3}^*(2860)^+$ resonances

Weak evidence for structure around 3 GeV/c²

 NP and UP resonances identified by helicity angle distribution of D* decay

- NP and UP resonances identified by helicity angle distribution of *D*^{*} decay
- NP resonances follow $\sin^2 \theta_H$ distribution

- NP and UP resonances identified by helicity angle distribution of D* decay
- NP resonances follow $\sin^2 \theta_H$ distribution
- UP resonances follow $1 + h\cos^2 \theta_H$
D_s^+ Spectroscopy

- NP and UP resonances identified by helicity angle distribution of D* decay
- NP resonances follow $\sin^2 \theta_H$ distribution
- UP resonances follow $1 + h \cos^2 \theta_H$
- Expected background-subtracted distributions seen for (a-c) D^{*}_{s1}(2700)⁺, D^{*}_{s3}(2860)⁺ and D_{sJ}(3040)⁺

JHEP 02 (2016) 133

D_s^+ Spectroscopy

- NP and UP resonances identified by helicity angle distribution of D* decay
- NP resonances follow $\sin^2 \theta_H$ distribution
- UP resonances follow $1 + h \cos^2 \theta_H$
- Expected background-subtracted distributions seen for (a-c) D^{*}_{s1}(2700)⁺, D^{*}_{s3}(2860)⁺ and D_{sJ}(3040)⁺
- Data consistent with additional UP contribution in 2.86 GeV/c² region

JHEP 02 (2016) 133

- First observation of $D^*_{s2}(2573)^+
 ightarrow D^{*+}K^0_{
 m s}$ decay
- Branching ratio relative to $D^*_{s2}(2573)^+ \rightarrow D^+ K^0_{s}$ measured to be

$$\frac{\mathcal{B}(D^*_{s2}(2573)^+ \to D^{*+}K^0_{s})}{\mathcal{B}(D^*_{s2}(2573)^+ \to D^+K^0_{s})} = 0.044 \pm 0.005\,(\text{stat.}) \pm 0.011\,(\text{syst.})$$

NEW! arXiv:1608.01289

theory predictions from 3400 Mass (MeV/c²) 3200 3000 2800 2600 2400 2200 2000 1800 1600 ${}^3\mathrm{S}_1 \quad {}^3\mathrm{P}_0 \quad \mathrm{P}_1 \quad {}^3\mathrm{P}_2 \quad {}^3\mathrm{D}_1 \quad \mathrm{D}_2 \quad {}^3\mathrm{D}_3 \quad {}^3\mathrm{F}_2 \quad \mathrm{F}_3 \quad {}^3\mathrm{F}_4$ ¹S J^P $0^{-} 1^{-} 0^{+} 1^{+} 2^{+} 1^{-} 2^{-} 3^{-} 2^{+} 3^{+} 4^{+}$ D^0 $D_0^*(2400)^0$ $D_1^*(2760)^0$ D^{*0} $D_1(2420)^0$ D(2550)⁰ $D_1(2430)^0$ $D_2^*(2460)^0$ $D_{J}^{*}(2760)^{0}$ Heavy Quark Spectroscopy at LHCb 14

• D^0 spectrum similar to D_s^+

23/08/2016

NEW!

PRD 82 (2010) 111101

JHEP 09 (2013) 145

D⁰ spectrum similar to D⁺_s
 Previously studied in

 e⁺e⁻ → D^{(*)+}π⁻X and

 pp → D^{(*)+}π⁻X inclusive
 decays.

PRD 92 (2015) 012012

- D^0 spectrum similar to D_s^+ ۲ Previously studied in
 - $e^+e^- \rightarrow D^{(*)+}\pi^- X$ and $pp \rightarrow D^{(*)+}\pi^- X$ inclusive decays.
- May also be compared against D^+ spectroscopy results

۲

PRD 92 (2015) 032002 PRD 92 (2015) 012012

- D^0 spectrum similar to D_s^+
- Previously studied in $e^+e^- \rightarrow D^{(*)+}\pi^-X$ and $pp \rightarrow D^{(*)+}\pi^-X$ inclusive decays.
- May also be compared against D⁺ spectroscopy results
- A number of claimed states have unknown J^P

PRD 92 (2015) 032002

- D^0 spectrum similar to D_s^+
- Previously studied in $e^+e^- \rightarrow D^{(*)+}\pi^-X$ and $pp \rightarrow D^{(*)+}\pi^-X$ inclusive decays.
- May also be compared against D⁺ spectroscopy results
- A number of claimed states have unknown J^P
 - Dalitz plot analysis of $B^+ \rightarrow D^- \pi^+ \pi^+$ decays allows J^P of natural states to be measured

23/08/2016

Heavy Quark Spectroscopy at LHCb

arXiv:1608.01289

NEW!

• Large pure sample of $B^-
ightarrow D^+ \pi^- \pi^-$ decays

NEW!

• Large pure sample of $B^- \rightarrow D^+ \pi^- \pi^-$ decays

 Signal window contains 28 000 B⁻ → D⁺π⁻π⁻ decays with very small (1 %) background contribution

NEW!

• Large pure sample of $B^- \rightarrow D^+ \pi^- \pi^-$ decays

- Signal window contains 28 000 B[−] → D⁺π[−]π[−] decays with very small (1 %) background contribution
- Dalitz plot (right) gives details of the resonant structure of the three-body decay

23/08/2016

NEW!

• Large pure sample of $B^- \rightarrow D^+ \pi^- \pi^-$ decays

- Signal window contains 28 000 B[−] → D⁺π[−]π[−] decays with very small (1 %) background contribution
- Dalitz plot (right) gives details of the resonant structure of the three-body decay

• DP folded at $m(D^+\pi_1^-) = m(D^+\pi_2^-)$ due to symmetry

NEW!

• Large pure sample of $B^- \rightarrow D^+ \pi^- \pi^-$ decays

- Signal window contains 28 000 B[−] → D⁺π[−]π[−] decays with very small (1 %) background contribution
- Dalitz plot (right) gives details of the resonant structure of the three-body decay
 - DP folded at $m(D^+\pi_1^-) = m(D^+\pi_2^-)$ due to symmetry
 - Three-lobed structure at $m^2(D^+\pi^-)_{\min} \approx 6 \text{ GeV}^2/c^4$ is due to spin-2 D_2^* (2460)⁰ resonance

arXiv:1608.01289

NEW!

Model-independent description used for D⁺π⁻ S-wave

Resonance	Spin	Model	Parameters
$D_2^*(2460)^0$	2	RBW	
$D_1^*(2680)^0$	1	RBW	Determined from data
$D_3^*(2760)^0$	3	RBW	Determined from data
$D_2^*(3000)^0$	2	RBW	
$D_{\nu}^{*}(2007)^{0}$	1	RBW	$m = 2006.98 \pm 0.15 \text{MeV}, \Gamma = 2.1 \text{MeV}$
B ^{*0} _v	1	RBW	$m=5325.2\pm0.4$ MeV, $\Gamma=0.0$ MeV
Total S-wave	0	MIPW	See next slide

Model-independent description used for $D^+\pi^-$ S-wave

 Non-resonant P-wave described by two virtual resonances

				LHCb
Resonance	Spin	Model	Parameters	4 sun
$D_2^*(2460)^0$	2	RBW		
$D_1^*(2680)^0$	1	RBW	Dotormined from data	g
$D_3^*(2760)^0$	3	RBW	Determined from data	
$D_2^*(3000)^0$	2	RBW		$1 2 \frac{3}{m(\pi'\pi')}$
$D_{v}^{*}(2007)^{0}$	1	RBW	$m = 2006.98 \pm 0.15$ MeV, $\Gamma = 2.1$ MeV	 DataD^*(2460)^t
B_{v}^{*0}	1	RBW	$\textit{m} = 5325.2 \pm 0.4 \text{MeV}, \Gamma = 0.0 \text{MeV}$	Total D_1^2(2760) ⁰
Total S-wave	0	MIPW	See next slide	Background B_v^{*0} $D_v^{*}(2007)^0$ $D_s^{*}(2760)^0$
				$D\pi$ S-wave $ D_{2}^{*}(3000)^{0}$

arXiv:1608.01289

NEW!

Model-independent description used for D⁺π⁻ S-wave

- Non-resonant P-wave described by two virtual resonances
- All other resonances described by relativistic Breit–Wigner functions

Resonance	Spin	Model	Parameters			
D ₂ *(2460) ⁰	2	RBW				
$D_1^*(2680)^0$	1	RBW	Determined from data			
D ₃ *(2760) ⁰	3	RBW				
$D_2^*(3000)^0$	2	RBW				
D*(2007) ⁰	1	RBW	$m = 2006.98 \pm 0.15$ MeV, $\Gamma = 2.1$ MeV			
B ^{*0}	1	RBW	$m = 5325.2 \pm 0.4$ MeV, $\Gamma = 0.0$ MeV			
Total S-wave	0	MIPW	See next slide			

arXiv:1608.01289

- Model-independent description used for D⁺π⁻ S-wave
- Non-resonant P-wave described by two virtual resonances
- All other resonances described by relativistic Breit–Wigner functions
- Mass projections of the DP (left) show good agreement between data and fit function

Resonance	Spin	Model	Parameters
$D_2^*(2460)^0$	2	RBW	
$D_1^{*}(2680)^0$	1	RBW	Determined from data
$D_3^*(2760)^0$	3	RBW	Determined from data
$D_2^*(3000)^0$	2	RBW	
$D_{v}^{*}(2007)^{0}$	1	RBW	$m = 2006.98 \pm 0.15 \text{MeV}, \Gamma = 2.1 \text{MeV}$
B_{v}^{*0}	1	RBW	$m = 5325.2 \pm 0.4$ MeV, $\Gamma = 0.0$ MeV
Total S-wave	0	MIPW	See next slide

arXiv:1608.01289

Resonance	Branching fraction (10 ⁻⁴)
D ₂ *(2460) ⁰	$3.62\pm0.06\pm0.14\pm0.09\pm0.25$
$D_1^*(2680)^0$	$0.84 \pm 0.06 \pm 0.07 \pm 0.18 \pm 0.06$
$D_3^*(2760)^0$	$0.10\pm 0.01\pm 0.01\pm 0.02\pm 0.01$
$D_2^*(3000)^0$	$0.02\pm0.01\pm0.01\pm0.01\pm0.00$
$D_V^*(2007)^0$	$1.09 \pm 0.07 \pm 0.07 \pm 0.24 \pm 0.07$
B_v^*	$0.27\pm0.10\pm0.14\pm0.16\pm0.02$
Total S-wave	$5.78 \pm 0.08 \pm 0.06 \pm 0.09 \pm 0.39$

• Product branching fraction measured for each resonance $(\mathcal{B}(B^- \to R\pi^-) \times \mathcal{B}(R \to D^+\pi^-))$

- Due to interference between broad overlapping states, total S-wave described in a model independent way
- Phase motion at low masses (points 1–6) consistent with presence of $D_0^*(2400)^0$ state

Contribution	Mass (MeV)	Width (MeV)
$D_2^*(2460)^0$	2463.7 ± 0.8	$\textbf{47.0} \pm \textbf{1.2}$
$D_1^{-1}(2680)^0$	2681 ± 15	187 ± 15
$D_3^*(2760)^0$	$\textbf{2775.5} \pm \textbf{7.9}$	95 ± 35
$D_2^{*}(3000)^{0}$	$\textbf{3214} \pm \textbf{57}$	186 ± 81

- Masses and widths of resonances determined from fit
- Sensitivity to spins from angular distributions
- Angular projections of the DP around each resonance (left) show good agreement between data and fit function

NEW!

 D₂^{*}(2460)⁰ in good agreement with world average

23/08/2016

Daniel Craik

Heavy Quark Spectroscopy at LHCb

- D₂^{*} (2460)⁰ in good agreement with world average
- First observation of $D_3^*(2760)^0$ and $D_2^*(3000)^0$ resonances

- D₂^{*} (2460)⁰ in good agreement with world average
- First observation of $D_3^*(2760)^0$ and $D_2^*(3000)^0$ resonances
- $D_1^*(2680)^0$ and $D_2^*(2760)^0$ confirmed with significances in excess of 10σ

- D^{*}₂(2460)⁰ in good agreement with world average
- First observation of D₃^{*}(2760)⁰ and D₂^{*}(3000)⁰ resonances
- D^{*}₁(2680)⁰ and D^{*}₃(2760)⁰ confirmed with significances in excess of 10σ
 - most likely correspond to 2S and 1D states, respectively

Heavy Quark Spectroscopy at LHCb

- D^{*}₂(2460)⁰ in good agreement with world average
- First observation of D₃^{*}(2760)⁰ and D₂^{*}(3000)⁰ resonances
- D^{*}₁(2680)⁰ and D^{*}₃(2760)⁰ confirmed with significances in excess of 10σ
 - most likely correspond to 2S and 1D states, respectively
- D^{*}₂(3000)⁰ confirmed with significance of 6.6σ

Heavy Quark Spectroscopy at LHCb

- D₂^{*} (2460)⁰ in good agreement with world average
- First observation of $D_3^*(2760)^0$ and $D_2^*(3000)^0$ resonances
- $D_1^*(2680)^0$ and $D_2^*(2760)^0$ confirmed with significances in excess of 10σ
 - most likely correspond to 2S and 1D states, respectively
- D^{*}₂(3000)⁰ confirmed with significance of 6.6σ
 - may correspond to either 2P or 1F excitation

Heavy Quark Spectroscopy at LHCb

NEW!

Daniel Craik

• LHCb confirms observation of $\Xi_b^{*0} \to \Xi_b^- \pi^+$

- New best measurement of mass
- First measurement of width
- Inclusive $D^{*\pm}K_s^0$ spectroscopy gives first observation of $D^*_{s2}(2573)^{\pm} \rightarrow D^{*\pm}K_s^0$ decay
- Dalitz plot analysis of $B^- \rightarrow D^+ \pi^- \pi^-$ decays gives first observations of $D_3^*(2760)^0$ and $D_2^*(3000)^0$
 - Spin of **D**^{*}₁(2680)⁰ also determined for first time

Luminosity

Effect	δm	Г
Fit bias correction		0.016
Simulated sample size	0.007	0.034
Multiple candidates	0.009	0.007
Resolution model	0.001	0.072
Background description	0.002	0.001
Momentum scale	0.009	0.001
RBW shape	0.017	0.011
Sum in quadrature	0.023	0.082
Statistical uncertainty	0.068	0.162

Systematic uncertainties on the mass and width

Effect	Uncertainty
Simulated sample size	2.4%
Tracking efficiency correction	3.0%
Fit quality efficiency correction	1.5%
Soft pion $p_{\rm T}$ cut	1.4%
Ξ_b^{*0} yield	1.0%
Ξ_b^- yield	2.0%
Sum in quadrature	4.9%

Systematic uncertainties on the production ratio

State	Signal Yield
$\eta_c(1S)$ +non res.	11246 ± 119
$J\!/\psi$	6721 ± 93
χ_{c0}	84 ± 22
χ_{c1}	95 ± 16
$\eta_{c}(2S)$	106 ± 22
$\psi(2S)$	588 ± 30
ψ (3770)	-6 ± 9
X(3872)	-14 ± 8

	$\eta_{c}(2S)$	X(3872)	ψ (3770)
Fit	5	3	5
BDT	8	2	11
Efficiency	2	1	1
Total	9	4	12
	$M_{J/\psi} - M_{\eta_c(1)}$	$M_{\psi(2S)} - M_{\psi(2S)}$	$\eta_{c(2S)} \Gamma_{\eta_{c}(1S)}$
	[MeV]	[MeV] [MeV]
Fit	0.90	0.10	1.20
BDT	0.21	0.55	0.40
Momentum scale	0.03	0.06	-
Total	0.92	0.56	1.27

Systematic uncertainties on (top) branching fractions (10⁻⁴) and (bottom) mass and width measurements

D_s^+ Spectroscopy

D_s^+ Spectroscopy

Data		D _{s1} (2700) ⁺	D*sJ(2860)+	χ^2/ndf
(a) $D^{*+}K_{\rm s}^0$	Mass	$2732.3 \pm 4.3 \pm 5.8$	$2867.1 \pm 4.3 \pm 1.9$	
$D^0 \! ightarrow K^- \pi^+$	Width	$136\pm19\pm24$	$50\pm11\pm13$	
	Yield	$(1.57 \pm 0.28) imes 10^4$	$(3.1\pm0.8) imes10^3$	94/103
	Significance	8.3	6.3	
(b) <i>D</i> *+ <i>K</i> ⁰ _s	Mass	$\textbf{2729.3} \pm \textbf{3.3}$	$\textbf{2861.2} \pm \textbf{4.3}$	
$D^0 \! ightarrow K^- \pi^+$	Width	136 (fixed)	57 ± 14	
NP sample	Yield	$(1.50\pm 0.11)\times 10^{4}$	$(2.50\pm 0.60) imes 10^3$	90/104
	Significance	7.6	7.1	
(c) $D^{*+}K_{\rm s}^0$	Mass	2732.3 (fixed)	2876.7 ± 6.4	
$D^0 \! ightarrow K^- \pi^+$	Width	136 (fixed)	50 ± 19	
UP sample	Yield	$(0\pm0.8) imes10^3$	$(1.0\pm0.4) imes10^3$	100/105
	Significance	0.0	3.6	
(d) D*+K_s^0	Mass	2725.5 ± 6.0	$\textbf{2844.0} \pm \textbf{6.5}$	
$D^0 ightarrow K^- \pi^+ \pi^+ \pi^-$	Width	136 (fixed)	50 ± 15	
	Yield	$(2.6\pm0.4) imes10^3$	490 ± 180	89/97
	Significance	4.7	3.8	
(e) <i>D</i> * ⁰ <i>K</i> +	Mass	$\textbf{2728.3} \pm \textbf{6.5}$	$\textbf{2860.9} \pm \textbf{6.0}$	
	Width	136 (fixed)	50 (fixed)	
	Yield	$(1.89 \pm 0.30) imes 10^3$	290 ± 90	79/99
	Significance	6.6	3.1	

The first nine unnormalised moments for background-subtracted efficiency-corrected data

Pulls between data and the fit model in equally populated bins across the square Dalitz plot

	Nominal	S/B frac.	Eff.	Bkad.	Fit bias	Total		Nominal	Fixed	Add	Alternative	DP veto	Total
D*(2460)0	35.7 ± 0.6	0.1	1.3	0.0	0.2	1.4			params.	D ₁ [*] (2760) ⁰	models		
D:(2680)0	8.3 ± 0.6	0.0	0.7	0.1	0.1	0.7	$D_2^*(2460)^0$	35.7 ± 0.6	0.9	0.0	0.0	0.1	0.9
$D_{c}^{*}(2760)^{0}$	1.0 ± 0.1	0.0	0.1	0.0	0.0	0.1	$D_1^*(2680)^0$	8.3 ± 0.6	0.2	0.9	0.0	1.5	1.8
D*(3000)0	0.2 ± 0.1	0.0	0.1	0.0	0.0	0.1	$D_3^*(2760)^0$	1.0 ± 0.1	0.0	0.0	0.0	0.2	0.2
D:(2007)0	10.8 ± 0.7	0.0	0.7	0.1	0.1	0.7	$D_2^*(3000)^0$	0.2 ± 0.1	0.0	0.0	0.0	0.1	0.1
B:	2.7 ± 1.0	0.0	1.4	0.1	0.2	1.4	$D_{v}^{*}(2007)^{0}$	10.8 ± 0.7	2.3	0.1	0.0	0.2	2.3
Total S-wave	57.0±0.8	0.0	0.6	0.1	0.1	0.6	B_v^*	2.7 ± 1.0	1.2	0.2	0.0	1.0	1.6
m(D*(2460) ⁰)	2463 7 ± 0.0	0.0	0.0	0.1	0.1	0.3	Total S-wave	57.0 ± 0.8	0.8	0.4	0.0	0.1	0.9
F (D*(2460)0)	47.0 + 0.9	0.0	0.0	0.1	0.1	0.0	$m(D_2^*(2460)^0)$	2463.7 ± 0.4	0.4	0.1	0.0	0.4	0.6
1 (D2(2400))	47.0 ± 0.8	0.1	0.9	0.1	0.0	0.9	Γ (D ₂ *(2460) ⁰)	47.0 ± 0.8	0.2	0.0	0.0	0.1	0.3
$m(D_1^*(2680)^0)$	2681.1 ± 5.6	0.1	4.8	0.9	0.2	4.9	$m(D_1^*(2680)^0)$	2681.1 ± 5.6	4.7	11.8	0.1	3.0	13.1
Γ (<i>D</i> [*] ₁ (2680) ^o)	186.7 ± 8.5	0.5	8.4	1.0	1.2	8.6	Γ (D; (2680) ⁰)	186.7 ± 8.5	3.2	4.5	0.3	6.0	8.2
m (D ₃ (2760) ⁰)	2775.5 ± 4.5	0.4	4.4	0.6	0.4	4.5	m (D [*] ₂ (2760) ⁰)	2775.5 ± 4.5	3.4	0.4	0.0	3.3	4.7
Γ (D ₃ [*] (2760) ⁰)	95.3 ± 9.6	0.9	5.9	1.5	4.9	7.9	Γ (D ₂ *(2760) ⁰)	95.3 ± 9.6	2.8	3.2	0.0	32.9	33.1
$m(D_2^*(3000)^0)$	3214 ± 29	3	29	13	9	33	m (D ₂ *(3000) ⁰)	3214 ± 29	25	1	1	26	36
Γ (D ₂ [*] (3000) ⁰)	186 ± 38	2	31	8	12	34	Γ (D [*] ₂ (3000) ⁰)	186 ± 38	7	19	0	60	63

(Left) Experimental and (right) model systematic uncertainties on the parameters

23/08/2016

Resonance	Fit fraction (%)						
$D_2^*(2460)^0$	$35.69 \pm 0.62 \pm 1.37 \pm 0.89$						
$D_{1}^{\overline{*}}(2680)^{0}$	$8.32 \pm 0.62 \pm 0.69 \pm 1.79$						
$D_3^*(2760)^0$	$1.01 \pm 0.13 \pm 0.13 \pm 0.25$						
$D_2^{*}(3000)^0$	$0.23 \pm 0.07 \pm 0.07 \pm 0.08$						
$D_v^*(2007)^0$	$10.79 \pm 0.68 \pm 0.74 \pm 2.34$						
B_{v}^{*}	$2.69 \pm 1.01 \pm 1.43 \pm 1.61$						
Total S-wave	$56.96 \pm 0.78 \pm 0.62 \pm 0.87$						

Fit fractions with statistical, experimental systematic, and model uncertainties