Quarkonium and heavy flavour production at ATLAS

Roger Jones
On Behalf of the ATLAS Collaboration

QCD@LHC 2016, Zurich, Switzerland

AALLAS Triggering for B-physics: Run-1

- 3-level system $O(20 \mathrm{MHz})$-> $O(400 \mathrm{~Hz})$ (2-Level for Run-2, @ 1 kHz)
- Level 1 - hardware $O(75) \mathrm{kHz}$
- Level 2 and Event Filter
- Software-based
- Offline-like reconstruction software
- Primary B-physics triggers:
- Two muon signals at L1
- confirmed at L2/EF with vertexing and invariant mass criteria applied

- Varying thresholds and prescaling applied to maximise signal rate
- Two muons; $\mathrm{p}_{\mathrm{T}}(\mu)>4 \mathrm{GeV}(\mu 4 \mu 4), \mu 4 \mu 6$
- (2015+ Requirements of higher thresholds / prescales.)
- Many relevant ATLAS results now available
- Recent ATLAS Results in this talk:

Production Cross-sections

Differential non-prompt J/ Ψ production fraction at 13 TeV
J / ψ and $\psi(2 \mathrm{~S}) \rightarrow \mu \mu$ at 7 and 8 TeV
$\psi(2 S), X(3872) \rightarrow J / \psi \pi \pi$
Search for $\mathbf{X}_{\mathbf{b}}$
\quad Open HF Production
f_{s} / f_{d}
Charm production
$\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$
Charm production

- For open beauty, see Gabriele Chiodini 's talk on Tuesday
- Di-J/4 in David Bartsch's talk after tea

ATLAS-CONF-2015-030
Eur.Phys.J. C76 (2016) 5, 283

ATLAS_CONF-2016-028

PRL B740 (2015) 199

PRL 115 (2015) 262001

Nucl. Phys. B907 (2016) 717

Comprehensive set of measurements across variety of decay modes and states

ATLASHeavy Quarkonia Production Lancaster

- Measurement of the prompt and non-prompt differential cross-sections of heavy quarkonia, typically in the dimuon decay mode
- Measured in 7 TeV (2011, $2.1 \mathrm{fb}^{-1}$), and $8 \mathrm{TeV}\left(2012,11.4 \mathrm{fb}^{-1}\right)$, now 13 TeV
- Here I concentrate on the recent charmonia results

K.A. Olive et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014)

Example: J/ ψ and $\psi(2 S)$

- $\psi(2 \mathrm{~S})$ meson: no significant feed-down from higher mass quarkonia,
- unique possibility to study $\mathrm{J}^{\mathrm{PC}}=1^{--}$states.
- J/ ψ production: contributions from 1^{--}and J^{++}in comparable amounts.
- Non-prompt fraction and Ratio of $\psi(2 \mathrm{~S})$ to J / ψ also extracted.
- Use displacement from PV for (non)-prompt separation
- Prompt: $\quad \delta(\tau) \otimes R(\tau)$
- non-prompt decays: $\quad 1 / \tau_{\psi} \cdot \exp \left(\tau / \tau_{\psi}\right) \otimes R(\tau)$
- Crystal-ball + Gaussian for mass description
- Weighted unbinned maximum log-likelihood fits to each $p_{T}-|y|$ slice.

- Default: assume no spin alignment J/ ψ and $\psi(2 S)$: LHC Comparison
- Comparison of ATLAS data to other LHC experiments.
- Good agreement between CMS for overlapping rapidity and $\mathrm{p}_{\mathrm{T}}(@ 7 \mathrm{TeV})$,
- Also compared to LHCb, in overlapping p_{T}, but adjoining slices of rapidity (@ 8TeV).
- Comprehensive suite of measurements, now covering areas of p_{T} : 0-120 GeV, y: 0-4.5 at LHC energies

Prompt J/ $\psi, 7$ TeV

[^0]
$\mathrm{J} / \psi, 8 \mathrm{TeV}$

(LHCb) JHEP 1306 (2013) 064,

- Double-differential cross-sections times BR:
- Prompt - compared to NRQCD,
- Good agreement across range of p_{T},

$$
\frac{\mathrm{d}^{2} \sigma(p p \rightarrow \psi)}{\mathrm{d} p_{\mathrm{T}} \mathrm{~d} y} \times \mathcal{B}\left(\psi \rightarrow \mu^{+} \mu^{-}\right)=\frac{N_{\psi}^{\mathrm{p}}}{\Delta p_{\mathrm{T}} \Delta y \times \int \mathcal{L} \mathrm{d} t}
$$

- No observed dependence with rapidity
- Although data a little softer

7 TeV

NLO derived using HELAC-ONIA tuned from Tevatron data

$\psi(2 S)$

J/ ψ and $\psi(2 S)$: Prompt cross-section

Lancaster University

 83

$$
\frac{\mathrm{d}^{2} \sigma(p p \rightarrow \psi)}{\mathrm{d} p_{\mathrm{T}} \mathrm{~d} y} \times \mathcal{B}\left(\psi \rightarrow \mu^{+} \mu^{-}\right)=\frac{N_{\psi}^{\mathrm{p}}}{\Delta p_{\mathrm{T}} \Delta y \times \int \mathcal{L} \mathrm{d} t}
$$

- Good agreement across range of p_{T},
- No observed dependence with rapidity
- Although data a little softer

8 TeV

NLO derived using HELAC-ONIA tuned from Tevatron data
$\psi(2 S)$

$$
\frac{\mathrm{d}^{2} \sigma(p p \rightarrow b \bar{b} \rightarrow \psi)}{\mathrm{d} p_{\mathrm{T}} \mathrm{~d} y} \times \mathcal{B}\left(\psi \rightarrow \mu^{+} \mu^{-}\right)=\frac{N_{\psi}^{\mathrm{np}}}{\Delta p_{\mathrm{T}} \Delta y \times \int \mathcal{L} \mathrm{d} t}
$$

- Small tendency for $\psi(2 \mathrm{~S})$ prediction to overestimate data

Lancaster University

$$
\frac{\mathrm{d}^{2} \sigma(p p \rightarrow b \bar{b} \rightarrow \psi)}{\mathrm{d} p_{\mathrm{T}} \mathrm{~d} y} \times \mathcal{B}\left(\psi \rightarrow \mu^{+} \mu^{-}\right)=\frac{N_{\psi}^{\mathrm{np}}}{\Delta p_{\mathrm{T}} \Delta y \times \int \mathcal{L} \mathrm{d} t}
$$

- Small tendency for $\psi(2 \mathrm{~S})$ prediction to overestimate data
 J / Ψ Production at 13 TeV
- Non-prompt production fraction:
- $6.4 \mathrm{pb}^{-1}$ of early 2015 data-taking (Run-2).
- Simplified analysis to $7 / 8 \mathrm{TeV}$:
- Efficiencies largely assumed to cancel in ratio.
- Strong dependence on p_{T}.
- No dependence on |y|
- $3|y|$ bins 0-0.75-1.50-2.0.
- Similar behaviour between 7/13 TeV; some variation wrt. lower energies.

- X(3872) narrow \& close to DD threshold
- Decays to $\rho \psi$ and $\omega \psi$ with comparable rate, violating isospin symmetry.
- Tetra quark? Molecule? Mixed state
- $J / \psi \pi \pi(10<p T<70 \mathrm{GeV})$ studied using $11.4 \mathrm{fb}-1$ of 8 TeV data
- Measure in 5 pT bins.
- No spin alignment assumed, but extremes used to set systematic
- In each pT bin, fit in 4 intervals of $\tau(J / \psi \pi \pi)$ to separate the prompt/non-prompt

$$
R_{B}^{2 L}=\frac{\operatorname{Br}(B \rightarrow X(3872)) \operatorname{Br}\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}{\operatorname{Br}(B \rightarrow \psi(2 S)) \operatorname{Br}\left(\psi(2 S) \rightarrow J / \psi \pi^{+} \pi^{-}\right)}=(3.57 \pm 0.33(\text { stat }) \pm 0.11(\mathrm{sys})) \% .
$$

- $\psi(2 S)$ consistent with a single lifetime component
- X(3872) requires a second short lifetime component (from decay of B_{c})
- Form ratio of X to $\psi(2 S)$ product BRs
$\psi(2 S)$ and $X(3872)$ non-prompt
Lancaster University fractions

CMS: JHEP 04 (2013) 154

- Reasonable agreement with CMS (different rapidity \& com energy)
- Relative production also measured

- Differential cross sections (times BRs) measured
- NLO+NRQCD gives reasonable agreement for prompt
- FONLL matches non-prompt well

$\psi(2 S)$ Production

University

- Differential cross sections (times BRs) measured
- NLO+NRQCD gives reasonable agreement for prompt
- FONLL overshoots data
- X(3872) modelled as mixture of $\chi_{c 1}(2 P)$ and $D^{0} /$ anti- D^{0} molecular state

 Search for X_{b} Production
- Look for analogous hidden beauty states in $\mathrm{Y}(1 \mathrm{~S}) \pi \pi$ decays
- $16.2 \mathrm{fb}^{-1}$ of 8 TeV data
- 8 bins of y, pT and angle between dipion and lab fame momentum of parent in parent COM frame
- Calibrate with $\mathrm{Y}(2 \mathrm{~S})$, validate with $\mathrm{Y}(3 \mathrm{~S})$
- No evidence for narrow states between $10.05-10.31 \mathrm{GeV}$ and $10.40-11.00 \mathrm{GeV}$

Lancaster 통 University

Open Heavy Flavour

 Fragmentation function ratio f_{s} / f_{d}- Integrated fragmentation function important for studies like $B_{s} \rightarrow \mu \mu$
- Obtained as a function of η and p_{T} from $B_{s} \rightarrow J / \psi \phi \& B_{d} \rightarrow J / \psi K^{*}$

$$
\frac{f_{s}}{f_{d}} \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi K^{* 0}\right)}=0.199 \pm 0.004 \text { (stat) } \pm 0.010 \text { (sys). c.f. } \quad \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi K^{* 0}\right)}=0.83_{-0.02}^{+0.03}\left(\omega_{B}\right)_{-0.00}^{+0.01}\left(f_{M}\right)_{-0.22}^{+0.01}\left(a_{i} i_{-0.02}^{+0.01}\left(m_{c}\right)\right.
$$

$$
\frac{f_{s}}{f_{d}}=0.240 \pm 0.004(\text { stat }) \pm 0.013(\text { sys }) \pm 0.017(\text { (th })
$$

pert. QCD Liu, Wang \& Xie PRD89 (2014) 094010
http://arxiv.org/abs/1309.0313v2

$\mathcal{R}_{\text {AXPERAMENT}}$ ATLAS
 Charm Production Cross-Section

- Differential and fiducial cross-sections of: $\mathrm{D}^{* \pm}, \mathrm{D}^{ \pm}$and $\mathrm{D}_{\mathrm{s}}{ }^{ \pm}$mesons measured at 7 TeV ;

$$
\begin{aligned}
D^{* \pm} \rightarrow & D^{0} \pi_{\mathrm{s}}^{ \pm} \\
& D^{0} \xrightarrow{\rightarrow} K^{-} \pi^{+} \\
D^{+} \rightarrow & K^{-} \pi^{+} \pi^{+} \\
D_{s}^{ \pm} \rightarrow & \phi \pi^{ \pm} \\
& \phi \rightarrow K^{+} K^{-}
\end{aligned}
$$

Nucl. Phys. B907 (2016) 717
arXiv:1512.02913

- Fiducial region: $3.5<\mathrm{p}_{\mathrm{T}}(\mathrm{D})<100 \mathrm{GeV},|\eta(\mathrm{D})|<2.1$.
- Extrapolated to full phase space (for $D^{* \pm}$ and $D^{ \pm}$)
- Compared to FONLL, GM-VFNS and NLO-MC (MC@NLO and HERWIG)

	$\sigma^{\text {vis }}\left(D^{* \pm}\right)$		$\sigma^{\text {vis }}\left(D^{ \pm}\right)$		$\sigma^{\text {vis }}\left(D_{s}^{* \pm}\right)$	
Range	low- p_{T} $[\mu \mathrm{b}]$	high- p_{T} $[\mathrm{nb}]$	low- p_{T} $[\mu \mathrm{b}]$	high- p_{T} $[\mathrm{nb}]$	low- p_{T} $[\mu \mathrm{b}]$	high- p_{T} $[\mathrm{nb}]$
ATLAS	331 ± 36	988 ± 100	328 ± 34	888 ± 97	160 ± 37	512 ± 104
GM-VFNS	340_{-150}^{+130}	1000_{-150}^{+120}	350_{-160}^{+150}	980_{-150}^{+120}	147_{-66}^{+54}	470_{-69}^{+56}
FONLL	202_{-79}^{+125}	753_{-104}^{+123}	174_{-66}^{+105}	617_{-86}^{+103}	-	-
POWHEG+PYTHIA	158_{-85}^{+179}	600_{-180}^{+300}	134_{-70}^{+148}	480_{-130}^{+240}	62_{-31}^{+64}	225_{-69}^{+114}
POWHEG+HERWIG	137_{-72}^{+147}	690_{-160}^{+380}	121_{-64}^{+129}	580_{-140}^{+280}	51_{-25}^{+50}	268_{-62}^{+107}
MC@NLO	157_{-72}^{+125}	980_{-290}^{+460}	140_{-65}^{+112}	810_{-260}^{+390}	58_{-25}^{+42}	345_{-87}^{+175}

AATAS

- $D^{* \pm}$ and $D^{ \pm}$differential cross-sections.
- Shapes of data well reproduced by FONLL and POWHEG;
- MC@NLO predicts harder pT spectra.
- Overall normalisations sit below data.
- GM-VFNS in good agreement in shape and normalisation.
- $\mathrm{d} \sigma / \mathrm{dn}$ differential cross-section shows similar trends for data and MC:
- Some discrepancy in shape for MC@NLO for high-pT (20-100 GeV) data.
3.5\% luminosity uncertainty not included in figures.

Differential Cross-sections

- Extrapolation to full phase space using low-pT dataset.
- Total cross-section from FONLL (with $\mathrm{D}^{* \pm}$ and $\mathrm{D}^{ \pm}$data):

ATLAS $\sigma_{c \bar{c}}^{\text {tot }}=8.6 \pm 0.3$ (stat) ± 0.7 (syst) ± 0.3 (lum) $\pm 0.2(\mathrm{ff})_{-3.4}^{+3.8}($ extr $) \mathrm{mb}$
ALICE $\quad \sigma_{c \bar{c}}^{\text {tot }}=8.5 \pm 0.5(\text { stat })_{-2.4}^{+1.0}($ syst $) \pm 0.3(\mathrm{lum}) \pm 0.2(\mathrm{ff})_{-0.4}^{+5.0}(\mathrm{extr}) \mathrm{mb}$

- In good agreement with ALICE measurement.
- POWHEG + PYTHIA used in extrapolation of:
- Strangeness suppression factor;

$$
\begin{aligned}
\gamma_{s / d} \frac{\sigma_{c \bar{c}}^{\mathrm{tot}}\left(D_{s}^{+}\right)}{\sigma_{c \bar{c}}^{\mathrm{tot}}\left(D^{+}\right)+\sigma_{c \bar{c}}^{\mathrm{tot}}\left(D^{*+}\right) \cdot \mathcal{B}_{D^{++} \rightarrow D^{0} \pi^{+}}} & =0.26 \pm 0.05(\mathrm{stat}) \pm 0.02(\mathrm{syst}) \pm 0.02(\mathrm{br}) \pm 0.01(\mathrm{extr}) \\
\gamma_{s / d}^{\mathrm{LEP}} & =0.24 \pm 0.02 \pm 0.01(\mathrm{br}) \quad \text { Eur. Phys. J. C } 75(2015) 19
\end{aligned}
$$

- Fraction of charmed non-strange D mesons in vector state;

$$
\begin{aligned}
P_{\mathrm{v}}^{d}=\frac{\sigma_{c \bar{c}}^{\mathrm{tot}}\left(D^{*+}\right)}{\sigma_{c \bar{c}}^{\mathrm{tot}}\left(D^{+}\right)+\sigma_{c \bar{c}}^{\mathrm{tot}}\left(D^{*+}\right) \cdot \mathcal{B}_{D^{*+} \rightarrow D^{0} \pi^{+}}} & =0.56 \pm 0.03(\mathrm{stat}) \pm 0.01(\mathrm{syst}) \pm 0.01(\mathrm{br}) \pm 0.02(\mathrm{extr}) \\
P_{\mathrm{V}}^{\mathrm{LEP}} & =0.61 \pm 0.02 \pm 0.01(\mathrm{br}) \quad \text { Eur. Phys. J. C } 75(2015) 19
\end{aligned}
$$

- Run-1 provided a comprehensive suite of quarkonium measurements at $7 / 8 \mathrm{TeV}$ in range of decay modes;
- Synergy with other LHC experiments; allows improved understanding of quarkonia production in hadronic collisions.
- Still some Run-1 results to come,
- Run-2 allows new energy regime to explore, results already emerging.
- Heavy flavour production measurements largely in agreement with theory:
- Some shape and normalisation differences.
- Exploring the nature of the $X(3872)$
- Associated production of quarkonia and di-quarkonium provide good tests of DPS processes
- Expect many interesting results to come.

Backup
Lancaster 통 University

PRL: 115.262001

- Ratio of b-quark fragmentation fractions: $\mathrm{f}_{\mathrm{s}} / \mathrm{f}_{\mathrm{d}}$
- Necessary input to rare decays / searches =>
- Improvement in constraints / sensitivity.
- ATLAS measurement with 7 TeV data, $2.47 \mathrm{fb}^{-1}$, through decays of:

$$
B_{s} \rightarrow J / \psi \phi \text { and } B_{d}^{0} \rightarrow J / \psi K^{* 0}
$$

$\frac{f_{s}}{f_{d}}=\frac{N_{B_{s}^{0}}}{N_{B_{d}^{0}}} \frac{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi K^{* 0}\right)}{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)} \frac{\mathcal{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)}{\mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right)} \mathcal{R}_{\text {eff }}$,

- $\mathcal{R}_{\text {eff }}$ is MC derived ratio of Acceptance and Efficiency

Observable	Value	σ
$N_{B_{s}^{0}}$	$6640 \pm 100 \pm 220$	3.3%
$N_{B_{d}^{0}}$	$36290 \pm 320 \pm 650$	1.8%
$\mathcal{R}_{\text {eff }}$	$0.799 \pm 0.001 \pm 0.010$	1.3%
$\mathcal{B}\left(\phi \rightarrow K^{+} K^{-}\right)$	0.489 ± 0.005	1.0%
$\mathcal{B}\left(K^{* 0} \rightarrow K^{+} \pi^{-}\right)$	0.66503 ± 0.00014	0.02%
Total		4.1%

f_{s} / f_{d} results

- From experiment:

$$
\frac{f_{s}}{f_{d}} \frac{\mathcal{B}\left(B_{s}^{0} \rightarrow J / \psi \phi\right)}{\mathcal{B}\left(B_{d}^{0} \rightarrow J / \psi K^{* 0}\right)}=0.199 \pm 0.004(\text { stat }) \pm 0.008(\mathrm{sys}) .
$$

- Recent theory result of ratio of BF:

Phys. Rev. D 89 (2014) 094010 and update in: arXiv:1309.0313v2

- Perturbative QCD gives 7.1\% theory uncertainty on BF ratio:

- Dependencies on $|\eta|$ and p_{T}.

$D^{* \pm}$ and $D^{ \pm}$Differential Cross-sections in η

- Charm production
- Systematic uncertainties in visible region.

Source	$\sigma^{\text {vis }}\left(D^{* \pm}\right)$		$\sigma^{v i s}\left(D^{ \pm}\right)$		$\sigma^{v i s}\left(D_{s}^{* \pm}\right)$	
	low- $p_{\text {T }}$	high- $p_{\text {T }}$	low- $p_{\text {T }}$	high- $p_{\text {T }}$	low- $p_{\text {T }}$	high- $p_{\text {T }}$
Trigger	-	$\begin{aligned} & \hline \hline+0.9 \% \\ & -1.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline+0.9 \% \\ & -1.0 \\ & \hline \end{aligned}$	-	$\begin{aligned} & \hline+0.9 \% \\ & -1.0 \\ & \hline \end{aligned}$
Tracking	$\pm 7.8 \%$	$\pm 7.4 \%$	$\pm 7.7 \%$	$\pm 7.4 \%$	$\pm 7.6 \%$	$\pm 7.4 \%$
$D^{(*)}$ selection	${ }_{-1.6}^{+2.8 \%}$	${ }_{-1.4}^{+1.7} \%$	${ }_{-1.0}^{+1.6 \%}$	${ }_{-0.6}^{+0.9} \%$	$\begin{aligned} & +2.6 \% \\ & -1.6 \end{aligned}$	${ }_{-0.9}^{+1.1} \%$
Signal fit	$\pm 1.3 \%$	$\pm 0.9 \%$	$\pm 1.3 \%$	$\pm 1.5 \%$	$\pm 6.4 \%$	$\pm 5.3 \%$
Modelling	${ }_{-1.7}^{+1.0 \%}$	${ }_{-2.3}^{+2.7} \%$	${ }_{-2.6}^{+2.3} \%$	${ }_{-2.4}^{+2.9} \%$	${ }_{-2.4}^{+1.7} \%$	${ }_{-2.4}^{+2.8} \%$
MC statistics	$\pm 0.6 \%$	$\pm 0.9 \%$	$\pm 0.8 \%$	$\pm 0.8 \%$	$\pm 2.9 \%$	$\pm 3.1 \%$
Luminosity	$\pm 3.5 \%$					
Branching fraction	$\pm 1.5 \%$	$\pm 1.5 \%$	$\pm 2.1 \%$	$\pm 2.1 \%$	$\pm 5.9 \%$	$\pm 5.9 \%$

Theory Uncertainties

- POWHEG+PYTHIA:

$3.5<\mathrm{p}_{\mathrm{T}}(\mathrm{D})<20 \mathrm{GeV}$

$\sigma^{\mathrm{vis}}\left(D^{* \pm}\right)=158_{-81}^{+176}(\text { scale })_{-16}^{+15}\left(m_{Q}\right)_{-13}^{+14}\left(\mathrm{PDF} \oplus \alpha_{s}\right)_{-16}^{+19}($ hadr $) \mu \mathrm{b}$,
$\sigma^{\mathrm{vis}}\left(D^{ \pm}\right)=134_{-67}^{+145}(\text { scale })_{-13}^{+12}\left(m_{Q}\right)_{-11}^{+12}\left(\mathrm{PDF} \oplus \alpha_{s}\right)_{-12}^{+21}($ hadr $) \mu \mathrm{b}$,
$\sigma^{\mathrm{vis}}\left(D_{s}^{ \pm}\right)=62_{-29}^{+63}($ scale $) \pm 6\left(m_{Q}\right) \pm 5\left(\mathrm{PDF} \oplus \alpha_{s}\right)_{-8}^{+7}($ hadr $) \mu \mathrm{b}$,
$20<\mathrm{p}_{\mathrm{T}}(\mathrm{D})<100 \mathrm{GeV}$
$\sigma^{\mathrm{vis}}\left(D^{* \pm}\right)=600_{-137}^{+269}(\text { scale })_{-21}^{+15}\left(m_{Q}\right)_{-34}^{+25}\left(\mathrm{PDF} \oplus \alpha_{S}\right)_{-111}^{+126}($ hadr $) \mathrm{nb}$,
$\sigma^{\text {vis }}\left(D^{ \pm}\right)=480_{-109}^{+208}(\text { scale })_{-11}^{+6}\left(m_{Q}\right)_{-27}^{+20}\left(\mathrm{PDF} \oplus \alpha_{S}\right)_{-71}^{+121}$ (hadr) nb,
$\sigma^{\mathrm{vis}}\left(D_{s}^{ \pm}\right)=225_{-47}^{+106}(\text { scale })_{-8}^{+9}\left(m_{Q}\right)_{-13}^{+9}\left(\mathrm{PDF} \oplus \alpha_{s}\right)_{-49}^{+40}($ hadr $) \mathrm{nb}$.

- FONLL:

$3.5<p_{T}(\mathrm{D})<20 \mathrm{GeV}$

$\sigma^{\mathrm{vis}}\left(D^{* \pm}\right)=202_{-73}^{+119}(\text { scale })_{-27}^{+36}\left(m_{Q}\right) \pm 21(\mathrm{PDF}) \pm 5(\mathrm{ff}) \mu \mathrm{b}, \quad \sigma^{\mathrm{vis}}\left(D^{* \pm}\right)=753_{-98}^{+116}(\text { scale })_{-18}^{+28}\left(m_{Q}\right) \pm 41$ (PDF) ± 17 (ff) $\mu \mathrm{b}$,
$\sigma^{\text {vis }}\left(D^{ \pm}\right)=1744_{-60}^{+99}(\text { scale })_{-24}^{+33}\left(m_{Q}\right) \pm 18(\mathrm{PDF}) \pm 7(\mathrm{ff}) \mu \mathrm{b}, \quad \sigma^{\mathrm{vis}}\left(D^{ \pm}\right)=617{ }_{-78}^{+92}(\text { scale })_{-21}^{+37}\left(m_{Q}\right) \pm 33(\mathrm{PDF}) \pm 23(\mathrm{ff}) \mu \mathrm{b}$.

- scale uncertainty: $\times 0.5-\times 2.0$ variation
- m_{Q} : Variation in b and c quark masses
- PDF uncertainty from CTEQ6.6 PDF error eigenvectors
- Fragmentation fraction uncertainty from LEP data
- hadr: quadrature sum of fragmentation fraction and function uncertainties (from Peterson fragmentation function).

[^0]: CMS: Phys. Rev. Lett. 114.19 (2015) 191802,

