

Quarkonium and heavy flavour production at ATLAS

Roger Jones On Behalf of the ATLAS Collaboration

QCD@LHC 2016, Zurich, Switzerland

ATLAS Triggering for B-physics: Run-1

- 3-level system $O(20MHz) \rightarrow O(400Hz)$ (2-Level for Run-2, @ 1kHz)
 - Level 1 hardware O(75)kHz
 - Level 2 and Event Filter
 - Software-based
 - Offline-like reconstruction software
- Primary B-physics triggers:
 - Two muon signals at L1
 - confirmed at L2/EF with vertexing and invariant mass criteria applied

- Varying thresholds and prescaling applied to maximise signal rate
 - Two muons; p_T(μ) > 4 GeV (μ4μ4) , μ4μ6
- (2015+ Requirements of higher thresholds / prescales.)

Quarkonium production

- Many relevant ATLAS results now available
- Recent ATLAS Results in this talk:

Production Cross-sections	
Differential non-prompt J/ψ production fraction at 13 TeV	
J/ψ and $\psi(2S) \to \mu\mu$ at 7 and 8 TeV	E
$\psi(2S),X(3872)\to J/\psi\pi\pi$	
Search for X _b	
Open HF Production	
$\mathbf{f_s}/\mathbf{f_d}$	
Charm production	

- For open beauty, see Gabriele Chiodini 's talk on Tuesday
- Di-J/ψ in David Bartsch's talk after tea

ATLAS-CONF-2015-030

Eur.Phys.J. C76 (2016) 5, 283

ATLAS_CONF-2016-028

PRL B740 (2015) 199

PRL 115 (2015) 262001

Nucl. Phys. B907 (2016) 717

Comprehensive set of measurements across variety of decay modes and states

ATLASHeavy Quarkonia Production Lancaster Cross-Sections Lancaster Cross-Sections

- Measurement of the prompt and non-prompt differential cross-sections of heavy quarkonia, typically in the dimuon decay mode
 - Measured in 7 TeV (2011, 2.1 fb⁻¹), and 8 TeV (2012, 11.4 fb⁻¹), now 13 TeV
 - Here I concentrate on the recent charmonia results

- ψ (2S) meson: no significant feed-down from higher mass quarkonia,
 - unique possibility to study J^{PC}=1⁻⁻ states.
- J/ψ production: contributions from 1⁻⁻ and J⁺⁺ in comparable amounts.
- Non-prompt fraction and Ratio of $\psi(2S)$ to J/ ψ also extracted.
- Use displacement from PV for (non)-prompt separation
- $\tau(\mu\mu) = \frac{L_{xy} \cdot m(\mu\mu)}{m_{xy}(\mu\mu)}$

Transverse

Invariant

Prompt:

$$\delta(au)\otimes R(au)$$

non-prompt decays:

$$1/\tau_{\psi} \cdot \exp\left(\tau/\tau_{\psi}\right) \otimes R(\tau)$$

- Crystal-ball + Gaussian for mass description
- Weighted unbinned maximum log-likelihood fits to each $p_T |y|$ slice.

Default: assume no spin alignment

Eur. Phys. J. C76 (2016) 5, 283

J/ψ and $\psi(2S)$: LHC Comparison

- Comparison of ATLAS data to other LHC experiments.
- Good agreement between CMS for overlapping rapidity and p_T (@ 7TeV),
- Also compared to **LHCb**, in overlapping p_T , but adjoining slices of rapidity (@ 8TeV).
 - Comprehensive suite of measurements, now covering areas of p_T : 0 - 120 GeV, y: 0 – 4.5 at LHC energies

ATLAS J/ψ and $\psi(2S)$: Prompt cross-section University

Lancaster 🌇

- **Prompt** compared to **NRQCD**,
 - Good agreement across range of p_T, No observed dependence with rapidity
 - Although data a little softer

 ${\sf J}/\psi$

 $\frac{\mathrm{d}^2 \sigma(pp \to \psi)}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \times \mathcal{B}(\psi \to \mu^+ \mu^-) = \frac{N_{\psi}^{\mathrm{p}}}{\Delta p_{\mathrm{T}} \Delta y \times \int \mathcal{L} \mathrm{d}t}$

NLO derived using **HELAC-ONIA** tuned from Tevatron data

ATLAS J/ψ and $\psi(2S)$: Prompt cross-section

- Double-differential cross-sections times BR:
 - **Prompt** compared to **NRQCD**,
 - Good agreement across range of p_T, No observed dependence with rapidity

8 TeV

NLO derived using **HELAC-ONIA** tuned from Tevatron data

ψ (2S)

 $\frac{\mathrm{d}^2 \sigma(pp \to \psi)}{\mathrm{d}p_{\mathrm{T}} \mathrm{d}y} \times \mathcal{B}(\psi \to \mu^+ \mu^-) = \frac{N_{\psi}^{\mathrm{p}}}{\Delta p_{\mathrm{T}} \Delta y \times \int \mathcal{L} \mathrm{d}t}$

ATLAS J/ψ and ψ (2S): Non-Prompt cross-section

- Double-differential cross-sections times BR: $\frac{\mathrm{d}^2\sigma(pp\to b\bar{b}\to\psi)}{\mathrm{d}p_\mathrm{T}\mathrm{d}y}\times\mathcal{B}(\psi\to\mu^+\mu^-)$
 - Small tendency for $\psi(2S)$ prediction to overestimate data

7 TeV

- FONLL predicts a harder spectrum than data.
- General trend appearing across several final states.

ψ (2S)

ATLAS J/ψ and $\psi(2S)$: Non-Prompt cross-section

- Double-differential cross-sections times BR: $\frac{\mathrm{d}^2\sigma(pp\to b\bar{b}\to\psi)}{\mathrm{d}p_\mathrm{T}\mathrm{d}y} \times \mathcal{B}(\psi\to\mu^+\mu^-) = \frac{N_\psi^\mathrm{np}}{\Delta p_\mathrm{T}\Delta y \times \int \mathcal{L}\mathrm{d}t}$
 - Small tendency for $\psi(2S)$ prediction to overestimate data

8 TeV

- FONLL predicts a harder spectrum than data.
- General trend appearing across several final states.

ψ (2S)

J/ψ Production at 13 TeV

ATLAS-CONF-2015-030

- Non-prompt production fraction:
 - 6.4 pb⁻¹ of early 2015 data-taking (Run-2).
 - Simplified analysis to 7/8 TeV:
 - Efficiencies largely assumed to cancel in ratio.
 - Strong dependence on p_T.
 - No dependence on |y|
 - 3 |y| bins 0-0.75-1.50-2.0.
 - Similar behaviour between
 7/13 TeV; some variation
 wrt. lower energies.

ATLAS-CONF-2016-028

- X(3872) narrow & close to DD threshold
 - Decays to $\rho\psi$ and $\omega\psi$ with comparable rate, violating isospin symmetry.
 - Tetra quark? Molecule? Mixed state
- J/ $\psi \pi \pi$ (10<pT<70 GeV) studied using 11.4fb-1 of 8TeV data
- Measure in 5 pT bins.
- No spin alignment assumed, but extremes used to set systematic
- In each pT bin, fit in 4 intervals of $\tau(J/\psi \pi \pi)$ to separate the prompt/non-prompt

- ψ (2S) consistent with a single lifetime component
- X(3872) requires a second short lifetime component (from decay of B_c)
- Form ratio of X to $\psi(2S)$ product BRs

$$R_B^{2L} = \frac{Br(B \to X(3872))Br(X(3872) \to J/\psi\pi^+\pi^-)}{Br(B \to \psi(2S))Br(\psi(2S) \to J/\psi\pi^+\pi^-)} = (3.57 \pm 0.33(\text{stat}) \pm 0.11(\text{sys}))\%.$$

$\psi(2S)$ and X(3872) non-prompt

fractions

ATLAS-CONF-2016-028

CMS: JHEP 04 (2013) 154

- Reasonable agreement with CMS (different rapidity & com energy)
- Relative production also measured

$\psi(2S)$ Production

ATLAS-CONF-2016-028

- Differential cross sections (times BRs) measured
- NLO+NRQCD gives reasonable agreement for prompt
- FONLL matches non-prompt well

ψ(2S) Production

ATLAS-CONF-2016-028

- Differential cross sections (times BRs) measured
- NLO+NRQCD gives reasonable agreement for prompt
- FONLL overshoots data
- X(3872) modelled as mixture of $\chi_{c1}(2P)$ and D^0 /anti- D^0 molecular state

Search for X_b Production PRL B740 (2015) 199

- Look for analogous hidden beauty states in $Y(1S)\pi\pi$ decays
- 16.2fb⁻¹ of 8TeV data
- 8 bins of y, pT and angle between dipion and lab fame momentum of parent in parent COM frame
- Calibrate with Y(2S), validate with Y(3S)
- No evidence for narrow states between 10.05-10.31 GeV and 10.40-11.00 GeV

 $R = (\sigma.B)/(\sigma.B)_{Y(2S)}$

Open Heavy Flavour

Fragmentation function ratio f_s/f_d

PRL 115 (2015) 262001

arXiv:1507.08925

- Integrated fragmentation function important for studies like B_s→μμ
- Obtained as a function of η and p_T from B_s→J/ψφ & B_d→J/ψK*

$$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to J/\psi \phi)}{\mathcal{B}(B_d^0 \to J/\psi K^{*0})} = 0.199 \pm 0.004(\text{stat}) \pm 0.010(\text{sys}). \quad \text{C.f.} \quad \frac{\mathcal{B}(B_s^0 \to J/\psi \phi)}{\mathcal{B}(B_d^0 \to J/\psi K^{*0})} = 0.83^{+0.03}_{-0.02}(\omega_B)^{+0.01}_{-0.00}(f_M)^{+0.01}_{-0.02}(a_i)^{+0.01}_{-0.02}(m_c)$$

$$\frac{f_s}{f_d}$$
 = 0.240 ± 0.004(stat) ± 0.013(sys) ± 0.017(th).

pert. QCD Liu, Wang & Xie PRD89 (2014) 094010 http://arxiv.org/abs/1309.0313v2

LAS Charm Production Cross-Section

Differential and fiducial cross-sections of:
 D*±, D± and D_s± mesons measured at 7 TeV;

$$D^{*\pm} \to D^0 \pi_s^{\pm}$$

$$D^0 \to K^- \pi^+$$

$$D^+ \to K^- \pi^+ \pi^+$$

$$D_s^{\pm} \to \phi \pi^{\pm}$$

$$\phi \to K^+ K^-$$

Nucl. Phys. B907 (2016) 717 arXiv:1512.02913

- Fiducial region: $3.5 < p_T(D) < 100 \text{ GeV}, |\eta(D)| < 2.1.$
- Extrapolated to full phase space (for D** and D*)
- Compared to FONLL, GM-VFNS and NLO-MC (MC@NLO and HERWIG)

	$\sigma^{ m vis}(D^{*\pm})$		$\sigma^{ m vis}$	(D^{\pm})	$\sigma^{ m vis}$	$(D_s^{*\pm})$
Range	low-p _T	high- p_{T}	$low-p_{\mathrm{T}}$	high- p_{T}	$low-p_{\mathrm{T}}$	high- $p_{ m T}$
[units]	[µb]	[nb]	[µb]	[nb]	[µb]	[nb]
ATLAS	331 ± 36	988 ± 100	328 ± 34	888 ± 97	160 ± 37	512 ± 104
GM-VFNS	340+130	1000+120 -150	350 ⁺¹⁵⁰ ₋₁₆₀	980+120	147^{+54}_{-66}	470+56
FONLL	202+125	753 ⁺¹²³ ₋₁₀₄	174 ⁺¹⁰⁵ ₋₆₆	617^{+103}_{-86}	-	-
POWHEG+PYTHIA	158 ⁺¹⁷⁹ ₋₈₅	600+300	134 ⁺¹⁴⁸ ₋₇₀	480+240	62^{+64}_{-31}	225^{+114}_{-69}
POWHEG+HERWIG	137^{+147}_{-72}	690+380	121^{+129}_{-64}	580^{+280}_{-140}	51^{+50}_{-25}	268^{+107}_{-62}
MC@NLO	157 ⁺¹²⁵ -72	980+460	140 ⁺¹¹² ₋₆₅	810^{+390}_{-260}	58 ⁺⁴² ₋₂₅	345 ⁺¹⁷⁵ ₋₈₇

ATLAS Differential Cross-sections

p_(D[±]) [GeV]

- $D^{*\pm}$ and D^{\pm} differential cross-sections.
- Shapes of data well reproduced by FONLL and POWHEG;
 - MC@NLO predicts harder pT spectra.
 - Overall normalisations sit below data.
- GM-VFNS in good agreement in shape and normalisation.
- dσ/dη differential cross-section shows similar trends for data and MC:
 - Some discrepancy in shape for MC@NLO for high-pT (20–100 GeV) data.

3.5% luminosity uncertainty not included in figures.

0.8

0.2

ATLAS Extrapolated Cross-sections University

- Extrapolation to full phase space using low-pT dataset.
 - Total cross-section from FONLL (with D*± and D± data):

ATLAS
$$\sigma_{c\bar{c}}^{\text{tot}} = 8.6 \pm 0.3 \, (\text{stat}) \pm 0.7 \, (\text{syst}) \pm 0.3 \, (\text{lum}) \pm 0.2 \, (\text{ff})_{-3.4}^{+3.8} \, (\text{extr}) \, \text{mb}$$

ALICE
$$\sigma_{c\bar{c}}^{\text{tot}} = 8.5 \pm 0.5 \, (\text{stat})_{-2.4}^{+1.0} \, (\text{syst}) \pm 0.3 \, (\text{lum}) \pm 0.2 \, (\text{ff})_{-0.4}^{+5.0} (\text{extr}) \, \text{mb}$$

JHEP 07 (2012) 191, arXiv:1205.4007 [hep-extraps]

- In good agreement with ALICE measurement.
- POWHEG + PYTHIA used in extrapolation of:
 - Strangeness suppression factor;

$$\gamma_{s/d} = \frac{\sigma_{c\bar{c}}^{\text{tot}}(D_{s}^{+})}{\sigma_{c\bar{c}}^{\text{tot}}(D^{+}) + \sigma_{c\bar{c}}^{\text{tot}}(D^{*+}) \cdot \mathcal{B}_{D^{*+} \to D^{0}\pi^{+}}} = 0.26 \pm 0.05 \text{ (stat)} \pm 0.02 \text{ (syst)} \pm 0.02 \text{ (br)} \pm 0.01 \text{ (extr)}$$

$$\gamma_{s/d}^{\text{LEP}} = 0.24 \pm 0.02 \pm 0.01 \text{ (br)}$$
Eur. Phys. J. C 75 (2015) 19

Fraction of charmed non-strange D mesons in vector state;

$$P_{\rm V}^d = \frac{\sigma_{c\bar{c}}^{\rm tot}(D^{*+})}{\sigma_{c\bar{c}}^{\rm tot}(D^{+}) + \sigma_{c\bar{c}}^{\rm tot}(D^{*+}) \cdot \mathcal{B}_{D^{*+} \to D^0\pi^+}} = 0.56 \pm 0.03 \, ({\rm stat}) \pm 0.01 \, ({\rm syst}) \pm 0.01 \, ({\rm br}) \pm 0.02 \, ({\rm extr})$$

$$P_{\rm V}^{\rm LEP} = 0.61 \pm 0.02 \pm 0.01 ({\rm br}) \qquad \qquad {\rm Eur. \, Phys. \, J. \, C \, 75 \, (2015) \, 19}$$

Summary

- Run-1 provided a comprehensive suite of quarkonium measurements at 7/8 TeV in range of decay modes;
 - Synergy with other LHC experiments; allows improved understanding of quarkonia production in hadronic collisions.
 - Still some Run-1 results to come,
 - Run-2 allows new energy regime to explore, results already emerging.
- Heavy flavour production measurements largely in agreement with theory:
 - Some shape and normalisation differences.
- Exploring the nature of the X(3872)
- Associated production of quarkonia and di-quarkonium provide good tests of DPS processes
- Expect many interesting results to come.

Backup

ATLAS f_s/f_d Fragmentation Ratio

PRL: 115.262001

- Ratio of b-quark fragmentation fractions: f_s/f_d
- Necessary input to rare decays / searches =>
 - Improvement in constraints / sensitivity.

 ATLAS measurement with 7 TeV data, 2.47 fb⁻¹, through decays of: $B_s \to J/\psi \phi$ and $B_d^0 \to J/\psi K^{*0}$

$$B_s
ightarrow J/\psi \phi$$
 and $B_d^0
ightarrow J/\psi K^{*0}$

$$\frac{f_s}{f_d} = \frac{N_{B_s^0}}{N_{B_d^0}} \frac{\mathcal{B}(B_d^0 \to J/\psi K^{*0})}{\mathcal{B}(B_s^0 \to J/\psi \phi)} \frac{\mathcal{B}(K^{*0} \to K^+ \pi^-)}{\mathcal{B}(\phi \to K^+ K^-)} \mathcal{R}_{\text{eff}},$$

• $\mathcal{R}_{ ext{eff}}$ is MC derived ratio of Acceptance and Efficiency corrections.

Observable	Value	σ
$N_{B_s^0}$	$6640 \pm 100 \pm 220$	3.3%
$N_{B_d^0}$	$36290 \pm 320 \pm 650$	1.8%
$\mathcal{R}_{ ext{eff}}$	$0.799 \pm 0.001 \pm 0.010$	1.3%
$\mathcal{B}(\phi \to K^+K^-)$	0.489 ± 0.005	1.0%
$\mathcal{B}(K^{*0} \to K^+\pi^-)$	0.66503 ± 0.00014	0.02%
Total		4.1%

f_s/f_{d:} results

From experiment:

$$\frac{f_s}{f_d} \frac{\mathcal{B}(B_s^0 \to J/\psi \phi)}{\mathcal{B}(B_d^0 \to J/\psi K^{*0})} = 0.199 \pm 0.004(\text{stat}) \pm 0.008(\text{sys}).$$

Recent theory result of ratio of BF:

Phys. Rev. D 89 (2014) 094010 and update in:

arXiv:1309.0313v2

Perturbative QCD gives 7.1%
 theory uncertainty on BF ratio:

$$\frac{\mathcal{B}(B_s^0 \to J/\psi \phi)}{\mathcal{B}(B_d^0 \to J/\psi K^{*0})} = 0.83_{-0.02}^{+0.03} (\omega_B)_{-0.00}^{+0.01} (f_M)_{-0.02}^{+0.01} (a_i)_{-0.02}^{+0.01} (m_c),$$

Resulting ratio:

$$\frac{f_s}{f_d}$$
 = 0.240 ± 0.004(stat) ± 0.010(sys) ± 0.017(th).

• No p_T or |y| dependence within the measured kinematic range.

fs/fd

• Dependencies on $|\eta|$ and p_T .

D*± and D± Differential Cross-sections in η

Systematics

- Charm production
- Systematic uncertainties in visible region.

Source	$\sigma^{vis}(D^{*\pm})$		$\sigma^{vis}(D^{\pm})$		$\sigma^{vis}(D_s^{*\pm})$	
	$low-p_T$	high- p_{T}	$low-p_T$	high- p_{T}	$low-p_{\mathrm{T}}$	high- p_{T}
Trigger	_	+0.9 % -1.0	_	+0.9 % -1.0	-	+0.9 % -1.0
Tracking	±7.8%	±7.4%	±7.7%	±7.4%	±7.6%	±7.4%
$D^{(*)}$ selection	+2.8 % -1.6	+1.7 % -1.4	+1.6% -1.0	+0.9 % -0.6	+2.6% -1.6	+1.1 % -0.9
Signal fit	±1.3%	±0.9%	±1.3%	±1.5%	±6.4%	±5.3%
Modelling	$^{+1.0}_{-1.7}\%$	+2.7 % -2.3 %	+2.3 % -2.6	$^{+2.9}_{-2.4}\%$	$^{+1.7}_{-2.4}\%$	$^{+2.8}_{-2.4}\%$
MC statistics	±0.6%	±0.9%	±0.8%	±0.8%	±2.9%	±3.1%
Luminosity	±3.5%	±3.5%	±3.5%	±3.5%	±3.5%	±3.5%
Branching fraction	±1.5%	±1.5%	±2.1%	±2.1%	±5.9%	±5.9%

Theory Uncertainties

 $20 < p_T(D) < 100 \text{ GeV}$

 $20 < p_T(D) < 100 \text{ GeV}$

POWHEG+PYTHIA: 3.5 < p_T(D) < 20 GeV

$$\sigma^{\text{vis}}(D^{*\pm}) = 158^{+176}_{-81} (\text{scale})^{+15}_{-16} (m_Q)^{+14}_{-13} (\text{PDF} \oplus \alpha_s)^{+19}_{-16} (\text{hadr}) \, \mu\text{b} \,, \qquad \sigma^{\text{vis}}(D^{*\pm}) = 600^{+269}_{-137} (\text{scale})^{+15}_{-21} (m_Q)^{+25}_{-34} (\text{PDF} \oplus \alpha_s)^{+126}_{-111} (\text{hadr}) \, \text{nb} \,, \\ \sigma^{\text{vis}}(D^{\pm}) = 134^{+145}_{-67} (\text{scale})^{+12}_{-13} (m_Q)^{+12}_{-11} (\text{PDF} \oplus \alpha_s)^{+21}_{-12} (\text{hadr}) \, \mu\text{b} \,, \qquad \sigma^{\text{vis}}(D^{\pm}) = 480^{+208}_{-109} (\text{scale})^{+6}_{-11} (m_Q)^{+20}_{-27} (\text{PDF} \oplus \alpha_s)^{+121}_{-71} (\text{hadr}) \, \text{nb} \,, \\ \sigma^{\text{vis}}(D^{\pm}) = 62^{+63}_{-29} (\text{scale}) \pm 6 (m_Q) \pm 5 (\text{PDF} \oplus \alpha_s)^{+7}_{-8} (\text{hadr}) \, \mu\text{b} \,, \qquad \sigma^{\text{vis}}(D^{\pm}) = 225^{+106}_{-47} (\text{scale})^{+9}_{-8} (m_Q)^{+9}_{-13} (\text{PDF} \oplus \alpha_s)^{+40}_{-49} (\text{hadr}) \, \text{nb} \,.$$

FONLL:

$$3.5 < p_T(D) < 20 \text{ GeV}$$

$$\begin{split} \sigma^{\mathrm{vis}}(D^{*\pm}) &= 202^{+119}_{-73}\,(\mathrm{scale})^{+36}_{-27}\,(m_Q) \pm 21\,(\mathrm{PDF}) \pm 5\,(\mathrm{ff})\,\mu\mathrm{b}\,, \\ \sigma^{\mathrm{vis}}(D^{*\pm}) &= 753^{+116}_{-98}\,(\mathrm{scale})^{+28}_{-18}\,(m_Q) \pm 41\,(\mathrm{PDF}) \pm 17\,(\mathrm{ff})\,\mu\mathrm{b}\,, \\ \sigma^{\mathrm{vis}}(D^{\pm}) &= 174^{+99}_{-60}\,(\mathrm{scale})^{+33}_{-24}\,(m_Q) \pm 18\,(\mathrm{PDF}) \pm 7\,(\mathrm{ff})\,\mu\mathrm{b}\,, \\ \sigma^{\mathrm{vis}}(D^{\pm}) &= 617^{+92}_{-78}\,(\mathrm{scale})^{+37}_{-78}\,(m_Q) \pm 33\,(\mathrm{PDF}) \pm 23\,(\mathrm{ff})\,\mu\mathrm{b}\,. \end{split}$$

- scale uncertainty: x0.5 x2.0 variation
- m_Q: Variation in b and c quark masses
- PDF uncertainty from CTEQ6.6 PDF error eigenvectors
- Fragmentation fraction uncertainty from LEP data
- hadr: quadrature sum of fragmentation fraction and function uncertainties (from Peterson fragmentation function).

ATLAS Run-I Trigger Performance

