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• A “universal production” scenario? 

• How easily can NRQCD account for it? 

• A simple interpretation 

• Test: global fit of charmonium data 
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Purely kinematic scaling 
→ production dynamics 
independent of 
quantum numbers! 

Mid-rapidity 
cross sections 
vs pT/M 
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Polarization 
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ψ(2S), 3 rapidity bins 

CMS, pp @7 TeV 

Polar decay anisotropy in the helicity frame vs pT 

PLB 727 (2013) 382 
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ψ(2S), averaged 

CMS, pp @7 TeV 

Polar decay anisotropy in the helicity frame vs pT 

PLB 727 (2013) 382 
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ψ(2S) 
J/ψ 

CMS, pp @7 TeV 

Polar decay anisotropy in the helicity frame vs pT 

PLB 727 (2013) 382 
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ψ(2S) 
J/ψ 
ϒ(1S) 

CMS, pp @7 TeV 

Polar decay anisotropy in the helicity frame vs pT 

PLB 727 (2013) 382 
PRL 110 (2013) 081802 
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ψ(2S) 
J/ψ 
ϒ(1S) 

CMS, pp @7 TeV 

• S-wave quarkonia: small decay anisotropies with no significant pT dependencies 

Polar decay anisotropy in the helicity frame vs pT 
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Polarization 
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ψ(2S) 
J/ψ 
ϒ(1S) 

CMS, pp @7 TeV 

• S-wave quarkonia: small decay anisotropies with no significant pT dependencies 
• No apparent differences between states, despite very different feed-down 

contributions from P-wave states 
→ expect similar, weak polarizations also for χc(1,2) and χb(1,2) 

ϒ(1S): ≈ 40% from χb  

ψ(2S): feed-down free 
J/ψ: ≈ 25% from χc  

Polar decay anisotropy in the helicity frame vs pT 

PLB 727 (2013) 382 
PRL 110 (2013) 081802 



Surprising simplicity 
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• There is today no experimental evidence of differences in production and decay 
kinematics between quarkonium states of different masses and angular 
momentum properties 
 

• Such scenario, with all quarkonia produced in the same way, is not expected a priori: 
because of conservation rules, partonic production cross sections are in principle 
different for states of different quantum numbers 



Theory has the floor 
13 

• How does NRQCD relate to the simple, “universal” scenario? 

• In the “factorization” hypothesis, cornerstone of NRQCD, a variety of production 
mechanisms is in principle foreseen for each quarkonium state 

quarkonium (Q ) 

2) in the long-distance evolution to the 
observed (netural) bound state 

quantum numbers change to final 

produces neutral or coloured QQ pair  
of any 2S+1LJ quantum numbers 

1) short-distance partonic process _ ψ, ϒ [3S1 ] 

χc1 , χb1 [3P1 ] χc2 , χb2 [3P2 ] 

ηc  , ηb [1S0 ] 

3S1 

1S0 3P0 

1P1 
1D2 3D3 

1S0 3S1 
1P1 

3P1 3P2 
3D2 3D1 3P1 

3P2 

χc0 , χb0 [3P0 ] 
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(and determines kinematics and polarization) 
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• How does NRQCD relate to the simple, “universal” scenario? 

• In the “factorization” hypothesis, cornerstone of NRQCD, a variety of production 
mechanisms is in principle foreseen for each quarkonium state 

quarkonium (Q ) 

2) in the long-distance evolution to the 
observed (netural) bound state 

quantum numbers change to final 

2) long-distance matrix elements (LDMEs): 
constant, fitted from data 

1) short-distance coefficients (SDCs): 
pT-dependent partonic cross sections 

QQ angular momentum and colour configuration 
_ 

σ(A + B → Q  + X) =   Σ 
S, L, C 

S{A + B → (QQ)C [2S+1LJ] + X}  
_ 

⋅ L{(QQ)C [2S+1LJ] → Q }       
_ 

produces neutral or coloured QQ pair  
of any 2S+1LJ quantum numbers 

1) short-distance partonic process _ ψ, ϒ [3S1 ] 

χc1 , χb1 [3P1 ] 

3S1 

1S0 3P0 

1P1 

χc2 , χb2 [3P2 ] 

1D2 3D3 

ηc  , ηb [1S0 ] 

1S0 3S1 
1P1 

3P1 3P2 

χc0 , χb0 [3P0 ] 

3D2 3D1 3P1 

3P2 



How “simple” is NRQCD? 
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Approximations (heavy-quark limit) and calculations induce hierarchies and 
links between pre-resonance contributions 

3S1 1S0 3P0|1|2 3S1 
J/ψ, ψ(2S) 

ϒ(1S), ϒ(2S), ϒ(3S)  
[3S1 ] 

3S1 3P1 [3P1 ] χc1 , χb1 

[3P2 ] χc2 , χb2 3S1 3P2 

3S1 1S0 1P1 1S0 [1S0 ] ηc  , ηb 

1S0 
3P2 

1P1 
1D2 

3D1 

1S0 

3S1 
1P1 

3P1 

3P2 

1S0 

1P1 

3D2 

1P1 

3P1 

3P2 

3P1 

3S1 

3D3 

1P1 3P0 

3P0 

3P0 
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3D1 
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3P2 
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2) Perturbative calculations → some SDCs are negligible: 
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Approximations (heavy-quark limit) and calculations induce hierarchies and 
links between pre-resonance contributions 

1) Small quark velocities v in the bound state → “v-scaling” rules for LDMEs 

J/ψ, ψ(2S) 

ϒ(1S), ϒ(2S), ϒ(3S)  
[3S1 ] 

[3P1 ] χc1 , χb1 

[3P2 ] χc2 , χb2 

[1S0 ] ηc  , ηb 

3S1 1S0 3P0|1|2 

3S1 3P1 

3S1 3P2 

3S1 1S0 

2) Perturbative calculations → some SDCs are negligible: 

3) Heavy-quark spin symmetry → relations between LDMEs of different states   

3S1 → χb2 

3S1 → χb1 
= 5 

3 1S0 → ϒ = 3S1 → ηb 

3S1 → χc2 

3S1 → χc1 
= 

1S0 → J/ψ = 3S1 → ηc , ,  etc. 



NRQCD vs universal pT/M scaling 
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J/ψ, ψ(2S) 

ϒ(1S), ϒ(2S), ϒ(3S)  
3S1 1S0 3P0|1|2 

3S1 

1S0 

−3P0|1|2 

Curves from H.-S. Shao et. al., PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238 

NRQCD @ NLO 

• Negative P-wave contributions require 
proper cancellation for every pT/M to 
recover physical result 
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χc1 , χb1 
3S1 3P1 

3S1 

−3P1 

Curves from H.-S. Shao et. al., PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238 

NRQCD @ NLO 

• Negative P-wave contributions require 
proper cancellation for every pT/M to 
recover physical result 
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χc2 , χb2 3S1 3P2 

3S1 

−3P2 

Curves from H.-S. Shao et. al., PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238 

NRQCD @ NLO 

• Negative P-wave contributions require 
proper cancellation for every pT/M to 
recover physical result 



NRQCD vs universal pT/M scaling 
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J/ψ, ψ(2S) 

ϒ(1S), ϒ(2S), ϒ(3S)  
χc1 , χb1 

χc2 , χb2 

3S1 1S0 3P0|1|2 

3S1 3P1 

3S1 3P2 

3S1 

1S0 

−3P0|1|2 

−3P2 

−3P1 

Curves from H.-S. Shao et. al., PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238 

NRQCD @ NLO 

• Different final states come from different 
pre-resonance mixtures, with rather 
diversified kinematic behaviours 

→ Conspiring SDC×LDME combinations needed to approximately reproduce 
observed pT/M scaling  

• Negative P-wave contributions require 
proper cancellation for every pT/M to 
recover physical result 



NRQCD vs unpolarized scenario 
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Curves from H.-S. Shao et. al., PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238 

NRQCD @ NLO 
J/ψ, ψ(2S) 

ϒ(1S), ϒ(2S), ϒ(3S)  
3S1 1S0 3P0|1|2 3P0|1|2 

3S1 

1S0 • Unphysical P-wave polarization 
(“hyper-transverse” for pT/M > 3) 

• must have SDC×LDME < 0 to become 
longitudinal and be cancelled by the 
transverse 3S1 contribution 

 

≈ ≈ 

comparable magnitudes 
according to v-scaling rules 

→ Chirurgical cancellation needed to approximately reproduce 
measured polarizations 



The χ case 
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NRQCD @ NLO 

Curves from H.-S. Shao et. al., PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238 

χc1 , χb1 χc2 , χb2 
3S1 3P1 3S1 3P2 

3S1 
3S1 

3P1 

3P2 

Colour-singlet contributions: 
• strongly polarize χ production (λθ even diverges at pT/M ≈ 3) 
• strongly differentiate J=2 from J=1 

Might they be found to be negligible, as in ψ and ϒ production? 



Singlet dominance? 
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The measured χc2/χc1 and χb2/χb1 ratios 
are half of the pure-octet expectation, 
indicating that the singlet components 
should be very important 

(heavy-quark spin-symmetry) 

CMS χc2/χc1  ATLAS χc2/χc1  CMS χb2/χb1  

3S1 → χb2 

3S1 → χb1 

3S1 → χc2 

3S1 → χc1 
= 5 

= 
3 

1.67 

JHEP 07 (2014) 154 EPJ C 72 (2012) 2251 PLB 743 (2015) 383 



Singlet dominance? 
29 

The measured χc2/χc1 and χb2/χb1 ratios 
are half of the pure-octet expectation, 
indicating that the singlet components 
should be very important 

On the other hand, large singlet terms 
would also lead to a large difference in 
pT-dependence between J=1 and J=2, 
contradicting the remarkably flat pT/M 
dependence of the measured ratio 

(heavy-quark spin-symmetry) 

3S1 −3P2 

−3P1 

3S1 → χb2 

3S1 → χb1 

3S1 → χc2 

3S1 → χc1 
= 5 

= 
3 

1.67 

CMS χc2/χc1  ATLAS χc2/χc1  CMS χb2/χb1  
JHEP 07 (2014) 154 EPJ C 72 (2012) 2251 PLB 743 (2015) 383 



The ηc “puzzle” 
30 

1S0 → J/ψ = 3S1 → ηc 

but heavy-quark spin-symmetry relations  
 
 
impose sizeable octet contributions, 
severely overshooting data 

ηc measurements are explained by 
pure 1S0 singlet production 

EPJ C 75 (2015) 311 



NRQCD vs simplicity 
31 

 
 

• The variety of pre-resonances implied by v-scaling hierarchies seems redundant 
with respect to the observed “universal” pT/M scaling and lack of polarization 

• Constraints imposed by heavy-quark symmetry relations further complicate the 
theory scenario, forcing the necessity of conspiracies to reproduce the simple 
data patterns 
 



Occam’s razor 
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We want to explore a much simpler picture, directly implied by data 

J/ψ, ψ(2S) 

ϒ(1S), ϒ(2S), ϒ(3S)  
χc1 , χb1 

χc2 , χb2 

3S1 1S0 3P0|1|2 

3S1 3P1 

3S1 3P2 

ηc  , ηb 3S1 1S0 

3S1 → χb2 

3S1 → χb1 
= 5 

3 

3S1 → χc2 

3S1 → χc1 
= 

1S0 → ϒ = 3S1 → ηb 

1S0 → J/ψ = 3S1 → ηc 

NRQCD heavy-quark-limit 
hierarchies and constraints Pure angular-momentum 

excitation hierarchy 

1S0 > 3S1 > ...  

The fractional contribution 
of 3S1 may depend on the 
final state. 
The unpolarized scenario 
indicates that it is very small 
for J/ψ and ψ(2S) states 



Occam’s razor 
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1S0 → χb2 

1S0 → χb1 
= 5 

3 

3S1 → χc2 

3S1 → χc1 
= 

Why to abdicate heavy-quark-limit hierarchies? 
 
For example, because they neglect 
mass-difference effects (M = 2 mQ for all states) 
and spin-orbit interactions 

E.g.: 

Real-world counterparts strongly violate this rule: 

ψ(2S) → χc2 γ 

ψ(2S) → χc1 γ 
= 0.95 ± 0.05  = 1.04 ± 0.08  

ϒ(2S) → χb2 γ 

ϒ(2S) → χb1 γ 

coming closer to the measured χ yield ratios ≈ 0.8  

Pure angular-momentum 
excitation hierarchy 

1S0 > 3S1 > ...  



Occam’s razor 
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1S0 → χ c,b2 

1S0 → χc,b1 
= Rχ 

3S1 → χc,b2 

3S1 → χc,b1 
= 

Instead, we introduce the constraint  

and, analogously, for the ψ and ϒ states 

Pure angular-momentum 
excitation hierarchy 

1S0 > 3S1 > ...  (model parameter) 

1S0 → ψ/ϒ(2S) 

1S0 → ψ/ϒ(1S) 
= Rψ 

3S1 → ψ/ϒ(2S) 

3S1 → ψ/ϒ(1S) 
= 



Occam’s razor 
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• naturally explains universal pT/M scaling 
and the lack of polarization 

• eases the ηc “puzzle” 

• avoids necessity of cancellations involving the 
unphysical P-wave contributions  

• predicts flat pT/M dependence of the χc2/χc1 ratio 
(as well as of the ψ(2S)/ψ(1S) ratio) 

Pure angular-momentum 
excitation hierarchy 

1S0 > 3S1 > ...  



Test: global charmonium fit 
36 

We want to test the hypothesis using charmonium data from the LHC: 
 
 
 
We take into account:  

• J/ψ, ψ(2S), χc1, χc2 cross sections measured by CMS and ATLAS 
• J/ψ and ψ(2S) polarizations measured by CMS 

• all relevant feed-downs 
 
 
with the correct kinematic transformations and polarization-transfer relations  

 
• luminosity and branching-ratio uncertainties and correlations 
• dependence of cross sections on polarization, via acceptance 

ψ(2S) → χc1,2  ψ(2S) → J/ψ χc1,2 → J/ψ 

Theory ingredients: 
• 1S0 and 3S1 octet-SDC calculations by H.-S. Shao et al. 

(PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238) 
• Leading-power fragmentation corrections by G.T. Bodwin et al. (PRL 113, 022001) 
• Theory uncertainty modelled as NLO-LO difference (= 100%-confidence-level 

semi-interval of a flat distribution) 



Test: global charmonium fit 
37 

χ2/ndf = 116.7 / 117 
P(χ2,ndf) = 49% 

PRL 114 (2015) 191802 



Test: global charmonium fit 
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PRL 114 (2015) 191802 
JHEP 09 (2014) 079 



Test: global charmonium fit 
39 

high pT: CMS-ATLAS disagreement or 
significant rapidity dependence? 

PRL 114 (2015) 191802 
JHEP 09 (2014) 079 



Test: global charmonium fit 
40 

Note: result sensitive to assumed theoretical uncertainties in 1S0 and 3S1 SDCs. 
Removing the uncertainty leads to stronger increase of polarization at high pT 

PLB 727 (2013) 382 
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Note: result sensitive to assumed theoretical uncertainties in 1S0 and 3S1 SDCs. 
Removing the uncertainty leads to stronger increase of polarization at high pT 

PLB 727 (2013) 382 



Test: global charmonium fit 
42 

Large uncertainty in the 3S1 term. More χc data needed! 

JHEP 07 (2014) 154 



Test: global charmonium fit 
43 

EPJ C 72 (2012) 2251 



Test: global charmonium fit 
44 

1S0 cross-section fractions for ψ and χc at pT/M = 6 

• 1S0 is the larger contribution for both χc and ψ, dominating the total cross sections 



Summary 
45 

• LHC data depict a scenario of maximum simplicity: 
universal pT/M scaling and lack of polarization 

• NRQCD, with its heavy-quark-limit hierarchies and constraints, can accommodate 
this scenario only through precise cancellations of extreme kinematic behaviours 
and polarizations 

• We tested a simple hypothesis, assuming only one, strong hierarchy based on 
angular momentum: production happens only via S-wave pre-resonances 

• A global fit of recent charmonium production data, taking into account feed-down 
relations, shows perfect compatibility with this interpretation 

• 1S0 dominates quarkonium cross sections at low pT/M 



Backup: ATLAS J/ψ→µµ cross sections 
46 

8 rapidity bins 
pulls with respect to 
common fitting function 

EPJ C 76 (2016) 283 
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