QCD@LHC, August 26th, 2016

A data-driven interpretation of heavy quarkonium measurements at the LHC

Pietro Faccioli

in collaboration with

M. Araújo, V. Knünz, I. Krätschmer, C. Lourenço, J. Seixas

- A "universal production" scenario?
- How easily can NRQCD account for it?
- A simple interpretation
- Test: global fit of charmonium data

What data say

p_T/M scaling

Mid-rapidity cross sections vs p_T/M

PRL 114 (2015) 191802 JHEP 09 (2014) 079 EPJ C 76 (2016) 283 JHEP 07 (2014) 154 PRD 87 (2013) 052004 PLB 749 (2015) 14

p_T/M scaling

Mid-rapidity cross sections vs p_{T}/M

PRL 114 (2015) 191802 JHEP 09 (2014) 079 EPJ C 76 (2016) 283 JHEP 07 (2014) 154 PRD 87 (2013) 052004 PLB 749 (2015) 14

p_⊤/M scaling

 $\psi(2S)$, 3 rapidity bins

• S-wave quarkonia: small decay anisotropies with no significant p_T dependencies

- S-wave quarkonia: small decay anisotropies with no significant p_T dependencies
- No apparent differences between states, despite very different feed-down contributions from P-wave states
 - \rightarrow expect similar, weak polarizations also for $\chi_{c(1,2)}$ and $\chi_{b(1,2)}$

Surprising simplicity

- There is today no experimental evidence of differences in production and decay kinematics between quarkonium states of different masses and angular momentum properties
- Such scenario, with all quarkonia produced in the same way, is not expected a priori: because of conservation rules, partonic production cross sections are in principle different for states of different quantum numbers

Theory has the floor

- How does NRQCD relate to the simple, "universal" scenario?
- In the "factorization" hypothesis, cornerstone of NRQCD, a variety of production mechanisms is in principle foreseen for each quarkonium state

Theory has the floor

- How does NRQCD relate to the simple, "universal" scenario?
- In the "factorization" hypothesis, cornerstone of NRQCD, a variety of production mechanisms is in principle foreseen for each quarkonium state

What is produced in the hard scattering (and determines kinematics and polarization) is a *pre-resonance* $Q\overline{Q}$ state with its own quantum properties

Theory has the floor

- How does NRQCD relate to the simple, "universal" scenario?
- In the "factorization" hypothesis, cornerstone of NRQCD, a variety of production mechanisms is in principle foreseen for each quarkonium state

$$\sigma(A+B\to\mathcal{Q}+X)=\sum_{S,L,C} S\{A+B\to(Q\bar{Q})_{C}[^{2S+1}L_{J}]+X\}\cdot \mathcal{L}\{(Q\bar{Q})_{C}[^{2S+1}L_{J}]\to\mathcal{Q}\}$$

 $Q\overline{Q}$ angular momentum and colour configuration

Approximations (*heavy-quark limit*) and calculations induce hierarchies and links between pre-resonance contributions

Approximations (*heavy-quark limit*) and calculations induce hierarchies and links between pre-resonance contributions

1) Small quark velocities v in the bound state \rightarrow "v-scaling" rules for LDMEs

Approximations (*heavy-quark limit*) and calculations induce hierarchies and links between pre-resonance contributions

1) Small quark velocities v in the bound state \rightarrow "v-scaling" rules for LDMEs

Approximations (*heavy-quark limit*) and calculations induce hierarchies and links between pre-resonance contributions

- 1) Small quark velocities v in the bound state \rightarrow "v-scaling" rules for LDMEs
- 2) **Perturbative calculations** \rightarrow some SDCs are negligible:

Approximations (*heavy-quark limit*) and calculations induce hierarchies and links between pre-resonance contributions

- 1) Small quark velocities v in the bound state \rightarrow "v-scaling" rules for LDMEs
- 2) **Perturbative calculations** \rightarrow some SDCs are negligible:

Approximations (*heavy-quark limit*) and calculations induce hierarchies and links between pre-resonance contributions

- 1) Small quark velocities v in the bound state \rightarrow "v-scaling" rules for LDMEs
- 2) **Perturbative calculations** \rightarrow some SDCs are negligible:

3) **Heavy-quark spin symmetry** \rightarrow relations between LDMEs of different states

$$\frac{{}^{3}S_{1} \rightarrow \chi_{c2}}{{}^{3}S_{1} \rightarrow \chi_{c1}} = \frac{{}^{3}S_{1} \rightarrow \chi_{b2}}{{}^{3}S_{1} \rightarrow \chi_{b1}} = \frac{5}{3} , \qquad \frac{{}^{3}S_{1} \rightarrow \eta_{c} = {}^{1}S_{0} \rightarrow J/\psi}{{}^{3}S_{1} \rightarrow \eta_{b} = {}^{1}S_{0} \rightarrow \Upsilon} , \text{ etc.}$$

$$^{1}S_{0}$$
 $^{3}S_{1}$ $^{3}P_{0|1|2}$ \longrightarrow $^{J/\psi}, \psi(2S)$ $\Upsilon(1S), \Upsilon(2S), \Upsilon(3S)$

• Negative P-wave contributions require proper **cancellation** for every p_T/M to recover physical result

$$^{3}P_{1}$$
 $^{3}S_{1}$ χ_{c1} , χ_{b1}

• Negative P-wave contributions require proper **cancellation** for every p_T/M to recover physical result

• Negative P-wave contributions require proper **cancellation** for every p_T/M to recover physical result

- Negative P-wave contributions require proper **cancellation** for every p_T/M to recover physical result
- Different final states come from different pre-resonance mixtures, with rather diversified kinematic behaviours
- \rightarrow Conspiring SDC×LDME combinations needed to approximately reproduce observed p_T /M scaling

NRQCD vs unpolarized scenario

comparable magnitudes according to *v*-scaling rules

- Unphysical P-wave polarization ("hyper-transverse" for $p_{T}/M > 3$)
- must have SDC×LDME < 0 to become longitudinal and be cancelled by the transverse ³S₁ contribution

→ Chirurgical cancellation needed to approximately reproduce measured polarizations

The χ case

Colour-singlet contributions:

- strongly polarize χ production (λ_{ij} even diverges at $p_T/M \approx 3$)
- strongly differentiate J=2 from J=1

Might they be found to be negligible, as in ψ and Υ production?

Singlet dominance?

(heavy-quark spin-symmetry)

The measured χ_{c2}/χ_{c1} and χ_{b2}/χ_{b1} ratios are *half* of the *pure*-octet expectation, indicating that the **singlet** components should be very important

Singlet dominance?

The measured χ_{c2}/χ_{c1} and χ_{b2}/χ_{b1} ratios are half of the pure-octet expectation, indicating that the **singlet** components should be very important

On the other hand, large singlet terms would also lead to a large difference in p_T -dependence between J=1 and J=2, contradicting the remarkably flat p_T/M dependence of the measured ratio

The η_c "puzzle"

NRQCD vs simplicity

- The variety of pre-resonances implied by v-scaling hierarchies seems **redundant** with respect to the observed "universal" p_T/M scaling and lack of polarization
- Constraints imposed by heavy-quark symmetry relations further complicate the theory scenario, forcing the necessity of conspiracies to reproduce the simple data patterns

We want to explore a much simpler picture, directly implied by data

NRQCD heavy-quark-limit hierarchies and constraints

$$^{1}S_{0}$$
 $^{3}S_{1}$ $^{3}P_{0|1|2}$ $Y(1S), \Upsilon(2S), \Upsilon(3S)$

$$^{3}P_{1}$$
 $^{3}S_{1}$ χ_{c1} χ_{b1}

$$^{3}P_{2}$$
 $^{3}S_{1}$ χ_{c2} , χ_{b2}

$$^{3}S_{1}$$
 $^{1}S_{0}$ η_{c} , η_{b}

$$\frac{{}^{3}S_{1} \rightarrow \chi_{c2}}{{}^{3}S_{1} \rightarrow \chi_{c1}} = \frac{{}^{3}S_{1} \rightarrow \chi_{b2}}{{}^{3}S_{1} \rightarrow \chi_{b1}} = \frac{5}{3}$$

$$^3S_1 \rightarrow \eta_c = ^1S_0 \rightarrow J/\psi$$

$$^3S_1 \rightarrow \eta_b = ^1S_0 \rightarrow \Upsilon$$

Pure angular-momentum excitation hierarchy

$${}^{1}S_{0} > {}^{3}S_{1} > \dots$$

The fractional contribution of 3S_1 may depend on the final state.

The unpolarized scenario indicates that it is very small for J/ψ and $\psi(2S)$ states

Why to abdicate heavy-quark-limit hierarchies?

For example, because they neglect mass-difference effects (M = 2 m_Q for all states) and spin-orbit interactions

E.g.:
$$\frac{{}^{3}S_{1} \rightarrow \chi_{c2}}{{}^{3}S_{1} \rightarrow \chi_{c1}} = \frac{{}^{1}S_{0} \rightarrow \chi_{b2}}{{}^{1}S_{0} \rightarrow \chi_{b1}} = \frac{5}{3}$$

Pure angular-momentum excitation hierarchy

$${}^{1}S_{0} > {}^{3}S_{1} > \dots$$

Real-world counterparts strongly violate this rule:

$$\frac{\psi(2S) \rightarrow \chi_{c2} \gamma}{\psi(2S) \rightarrow \chi_{c1} \gamma} = 0.95 \pm 0.05 \qquad \frac{\Upsilon(2S) \rightarrow \chi_{b2} \gamma}{\Upsilon(2S) \rightarrow \chi_{b1} \gamma} = 1.04 \pm 0.08$$

coming closer to the measured χ yield ratios ≈ 0.8

Instead, we introduce the constraint

$$\frac{{}^{3}S_{1} \rightarrow \chi_{c,b2}}{{}^{3}S_{1} \rightarrow \chi_{c,b1}} = \frac{{}^{1}S_{0} \rightarrow \chi_{c,b2}}{{}^{1}S_{0} \rightarrow \chi_{c,b1}} = R_{\chi}$$
(model parameter)

and, analogously, for the ψ and Υ states

$$\frac{{}^{3}S_{1} \rightarrow \psi/\Upsilon(2S)}{{}^{3}S_{1} \rightarrow \psi/\Upsilon(1S)} = \frac{{}^{1}S_{0} \rightarrow \psi/\Upsilon(2S)}{{}^{1}S_{0} \rightarrow \psi/\Upsilon(1S)} = R_{\psi}$$

Pure angular-momentum excitation hierarchy

$${}^{1}S_{0} > {}^{3}S_{1} > \dots$$

 naturally explains universal p_T/M scaling and the lack of polarization

 avoids necessity of cancellations involving the unphysical P-wave contributions Pure angular-momentum excitation hierarchy

$$^{1}S_{0} > ^{3}S_{1} > \dots$$

• predicts **flat** p_T /**M dependence** of the χ_{c2}/χ_{c1} ratio (as well as of the $\psi(2S)/\psi(1S)$ ratio)

• eases the η_c "puzzle"

We want to test the hypothesis using charmonium data from the LHC:

- J/ ψ , ψ (2S), χ_{c1} , χ_{c2} cross sections measured by CMS and ATLAS
- J/ψ and $\psi(2S)$ polarizations measured by CMS

We take into account:

all relevant feed-downs

$$\psi(2S) \rightarrow \chi_{c1.2} \quad \psi(2S) \rightarrow J/\psi \quad \chi_{c1.2} \rightarrow J/\psi$$

with the correct kinematic transformations and polarization-transfer relations

- **luminosity** and **branching-ratio** uncertainties and correlations
- dependence of cross sections on polarization, via acceptance

Theory ingredients:

- ¹S₀ and ³S₁ octet-SDC calculations by H.-S. Shao et al.
 (PRL 108, 242004; PRL 112, 182003; Comput. Phys. Commun. 198, 238)
- Leading-power fragmentation corrections by G.T. Bodwin et al. (PRL 113, 022001)
- Theory uncertainty modelled as NLO-LO difference (= 100%-confidence-level semi-interval of a flat distribution)

Note: result sensitive to assumed theoretical uncertainties in $^1\mathrm{S}_0$ and $^3\mathrm{S}_1$ SDCs. Removing the uncertainty leads to stronger increase of polarization at high pT

Note: result sensitive to assumed theoretical uncertainties in 1S_0 and 3S_1 SDCs. Removing the uncertainty leads to stronger increase of polarization at high pT

Large uncertainty in the 3S_1 term. More χ_c data needed!

 $^{1}\text{S}_{0}$ cross-section fractions for ψ and χ_{c} at p_{T}/M = 6

• 1S_0 is the larger contribution for both χ_c and ψ , dominating the total cross sections

Summary

- LHC data depict a scenario of maximum simplicity: universal p_T/M scaling and lack of polarization
- NRQCD, with its heavy-quark-limit hierarchies and constraints, can accommodate this scenario only through precise cancellations of extreme kinematic behaviours and polarizations
- We tested a simple hypothesis, assuming only one, strong hierarchy based on angular momentum: production happens only via S-wave pre-resonances
- A global fit of recent charmonium production data, taking into account feed-down relations, shows perfect compatibility with this interpretation
- ${}^{1}S_{0}$ dominates quarkonium cross sections at low p_{T}/M

Backup: ATLAS J/ $\psi \rightarrow \mu\mu$ cross sections

pulls with respect to common fitting function