

HEAVY QUARKONIUM PHYSICS FOR A FIXED-TARGET EXPERIMENT AT THE LHC

(AFTER@LHC)

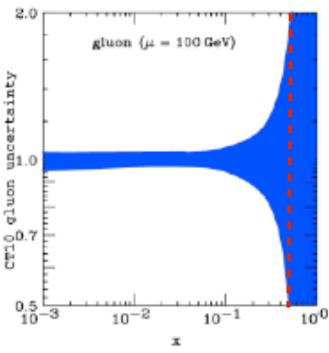
HUA-SHENG SHAO

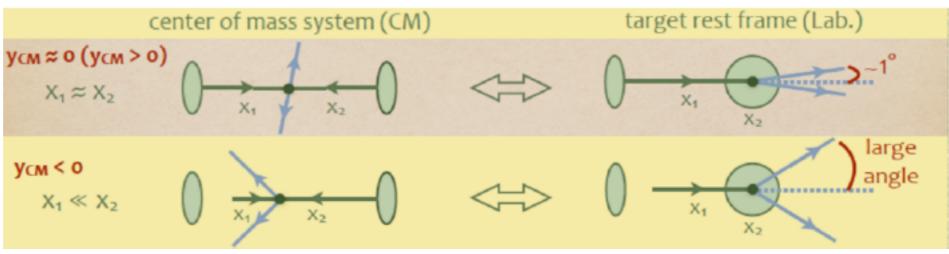
THEORETICAL PHYSICS DEPARTMENT CERN

25 AUGUST 2016

WHAT IS AFTER@LHC?

AFTER@LHC is a proposal for a multi-purpose fixed target experiment using the multi-TeV proton or heavy ion beams of the LHC at CERN


Faculty members


- M. Anselmino Dip. di Fisica and INFN Sez. Torino, Via P. Giuria 1, I-10125, Torino, Italy
- R. Arnaldi and E. Scomparin INFN Sez. Torino, Via P. Giuria 1, I-10125, Torino, Italy
- S.J. Brodsky and C. Lorcé SLAC National Accelerator Laboratory, Theoretical Physics, Stanford University, Menlo Park, CA 94025, USA
- V. Chambert, J.P. Didelez, B. Genolini, C. Hadjidakis, I. Hrivnacova, and J.P. Lansberg IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France C. Da Silva, A. Klein, Los Alamos, USA
- M.G. Echevarria Departament d'Estructura i Constituents de la Matèria, Facultad de Física, Universitat de Barcelona
- E.G. Ferreiro Departamento de F´ısica de Particulas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- F. Fleuret Laboratoire Leprince Ringuet, Ecole Polytechnique, CNRS/IN2P3, 91128 Palaiseau, France
- Y. Gao and Z. Yang CHEP, Department of Engineering Physics, Tsinghua University, Beijing, China
- D. Kikola Faculty of Physics, Warsaw University of Technology, ul. Koszykowa 75, 00-662 Warsaw, Poland
- C. Lorcé Centre de Physique Théorique, Ecole Polytechnique, Palaiseau, France
- L. Massacrier LAL, Université Paris-Sud, CNRS/IN2P3, Orsay, France and IPNO, Université Paris-Sud, CNRS/IN2P3, F-91406, Orsay, France
- R. Mikkelsen and U.I. Uggerhøj Department of Physics and Astronomy, University of Aarhus, Denmark
- C. Quintans and J. Seixas LIP, Lisbon, Portugal
- C. Pisano Pavia U. Italy
- I. Schienbein LPSC, Univeristé Joseph Fourier, CNRS/IN2P3/INPG, F-380 26 Grenoble. France
- A. Signori Nikhef, Amsterdam, The Netherlands
- M. Schlegel Institute for Theoretical Physics, T"ubingen U., D-72076 Tübingen, German
- R. Ulrich, U. Kramer Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe, Germany

PHYSICS OPPORTUNITIES OF AFTER@LHC

- Large-x gluon and (anti-,heavy-)quark content in nucleon & nucleus
 - Very large PDF uncertainties for $x \gtrsim 0.5$
 - Proton charm content important to high-energy neutrino and cosmic-ray physics
 - EMC effect is an open problem; studying a possible gluon EMC effect is essential
 - Relevance of nuclear PDF to understand initial state of heavy-ion collisions
 - Search and study of rare proton fluctuations, where one gluons carries most of the proton momentum

- Backward physics fully accessible for the first time
- Access to partons with momentum fraction x $_2 \rightarrow 1$ in the target $(\underline{x}_F \xrightarrow{} -1)$

PHYSICS OPPORTUNITIES OF AFTER@LHC

- Large-x gluon and (anti-,heavy-)quark content in nucleon & nucleus
 - Very large PDF uncertainties for $x \gtrsim 0.5$
 - Proton charm content important to high-energy neutrino and cosmic-ray physics
 - EMC effect is an open problem; studying a possible gluon EMC effect is essential
 - Relevance of nuclear PDF to understand initial state of heavy-ion collisions
 - Search and study of rare proton fluctuations, where one gluons carries most of the proton momentum
- Dynamics and spin of gluons inside (un)polarised nucleons
 - Possible missing contribution to the proton spin: orbital angular momentum
 - Test of the QCD factorisation framework
 - Determination of linearly polarised gluons in unpolarised protons
- Heavy-ion collisions from middle to large rapidities
 - Explore the longitudinal expansion of QGP formation with hard probes
 - Test the factorisation of cold nuclear effect from p+A to A+B collisions
 - Test azimuthal asymmetries: hydro vs. initial-state radiation see T. Peitzmann's talk

PHYSICS OPPORTUNITIES OF AFTER@LHC

Physics Reports 522 (2013) 239;
 Few Body Syst. 53 (2012) 11-25.

Physics Reports 522 (2013) 239-255

Contents lists available at SciVerse ScienceDirect

Physics Reports

journal homepage: www.elsevier.com/locate/physrep.

Deconfinement in hence, for collision

Physics opportunities of a fixed-target experiment using LHC beams

S.J. Brodsky *, F. Fleuret b, C. Hadjidakis c, J.P. Lansberg cs

- SLAC National Accelerator Laboratory, Stanford University, Mento Perk, CA 94025, USA
- ^b Laboratoire Leprince Ringuet, Ecole polytechnique, CNCS/BC2P3, 91128 Palaiseus, France
- * IPWO, Université Paris-Sud, CNRS/W2P3, 91496 Orsay, France

Contents

Introduction

		E. B.	Dec	infinement in fleavy-ion collisions
2.	Key nu	mbers and features	6.1.	Quarkonium studies
3.	Nucleo	n partonic structure	62.	
		Drell-Yan	6.3.	
	3.2.	Gluons in the proton at large x	6.4.	
		3.2.1. Quarkonia	65.	Nuclear-matter base-line
		3.2.2. Jees	W a	nd Z boson production in pp, pd and pA collisions
			7.1.	
		3.2.3. Direct/isolated photons	7.2.	W/Z production in pp and pd
		Gluons in the deuteron and in the neutron 8.		usive, semi-exclusive and backward reactions
		Charm and bottom in the proton	8.1.	
		3.4.1. Open-charm production	8.2.	Hard diffractive reactions.
		3.4.2. $J/\psi + D$ meson production	8.3.	Heavy-hadron (diffractive) production at x ₂ → -1
		3.4.3. Heavy-quark plus photon production	8.4.	Very backward physics
4.		ysics	8.5.	Direct hadron production
		Transverse SSA and DY	Furt	her potentialities of a high-energy fixed-target set-up
		Quarkonium and heavy-quark transverse SSA	9.1.	D and B physics
	4.3.	Transverse SSA and photon	9.2.	
	4.4.	Spin asymmetries with a final state polarization	9.3.	Forward studies in relation with cosmic shower
5.	Nuclear	r matter	Con	clusions
	5.1.	Quark nPDF: Drell-Yan in pA and Pbp		nowledgments
	5.2.	Gluon nPDF	Refe	rences
		5.2.1. Isolated photons and photon-jet correlations		
		5.2.2. Precision quarkonium and heavy-flavour studies		
	5.3.	Color filtering, energy loss, Sudakov suppression and hadron break-u	p in the	nucleus
-	-			

Expression of Interest in preparation

Many more ideas for a fixed target experiment at LHC in a Special Issue in Advances in High Energy Physics

Advances in High Energy Physics

Special Issue on Physics at a Fixed-Target Experiment Using the LHC Beams

CALL FOR PAPERS

- Heavy-ion physics
- → Exclusive reactions
- Spin physics studies
- Hadron structure
- Feasibility study and technical ideas

http://after.in2p3.fr/after/index.php/Recent_p ublished_ideas_in_favour_of_AFTER@LHC

WHY WE NEED AFTER@LHC?

- Advantages of a fixed-target experiment:
 - access to large Feynman |x_F|
 - target versatility
 - possibility to polarize the target (study spin physics)
 - · high luminosities can be achieved with either dense targets or high intensity beams
- AFTER@LHC kinematics with utilizing LHC beams

7 TeV proton beam on a fixed target

CMS energy:	$\sqrt{s} = \sqrt{2m_N E_p} \approx 115 \text{ GeV}$	Rapidity shift:
Boost:	$\gamma = \sqrt{s} / (2m_p) \approx 60$	$y_{CM} = 0 \rightarrow y_{lab} = 4.8$

2.76 TeV Pb beam on a fixed target

CMS energy:	$\sqrt{s_{NN}} = \sqrt{2m_N E_{Pb}} \approx 72 \text{ GeV}$	Rapidity shift:
Boost:	$\gamma \approx 40$	$y_{CM} = 0 \rightarrow y_{lab} = 4.3$

HOW AFTER@LHC WORKS?

- Beam line extracted with a bent crystal
- Dense targets: internal gas target similar to SMOG at LHCb
- High intensity beams: internal wire target Kurepin, Topilskaya (Adv. High Energy Phys.'15)
- Luminosities in pH and pA

Target	ρ (g.cm ⁻³)	Α	L (µb ⁻¹ .s ⁻¹)	$\int_{-\infty}^{\infty} L$ (pb ⁻¹ .yr ⁻¹)
Liq H ₂ (1m)	0.07	1	2000	20000
Liq D ₂ (1m)	0.16	2	2400	24000
Be (1cm)	1.85	9	62	620
Cu (1cm)	8.96	64	42	420
W (1cm)	19.1	185	31	310
Pb (1cm)	11.35	207	16	160

LHC year - 9 months of running

For 1m long H₂ target

$$\int \mathcal{L} = 20 \text{ fb}^{-1} \text{yr}^{-1}$$

Large luminosities comparable to LHC, 3 orders of magnitude larger that at RHIC

Luminosities in PbH and PbA

Target	ρ (g.cm ⁻³)	Α	L (µb ⁻¹ .s ⁻¹)	$\int_{-\infty}^{\infty} L$ (pb·1.yr·1)
Liq H ₂ (1m)	0.07	1	0.8	0.8
Liq D ₂ (1m)	0.16	2	1	1
Be (1cm)	1.85	9	0.025	0.025
Cu (1cm)	8.96	64	0.017	0.017
W (1cm)	19.1	185	0.013	0.013
Pb (1cm)	11.35	207	0.007	0.007

Pb LHC year − 1 months of running

For 1m long H₂ target

 $\int \mathcal{L} = 0.8 \text{ pb}^{-1}\text{yr}^{-1}$

For 1cm long Pb target

 $\int \mathcal{L} = 7 \text{ nb}^{-1} \text{yr}^{-1}$

LHC PbPb Collider: 0.5 nb⁻

HUA-SHENG SHAO

PHYSICS HIGHLIGHT AT AFTER@LHC

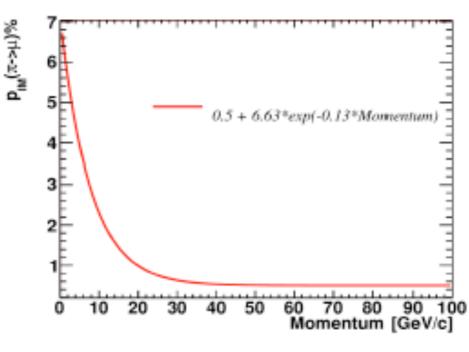
- PDF in nucleon & nucleus (complementary to EIC, LHeC)
- Spin physics (QCD factorization, Boers-Mulder effect, Sivers efffect etc)
- Heavy-ion collisions (cold nuclear matter effect, QGP, azimuthal asymmetries)
- Exclusive reaction (ultra-peripheral collisions)

PHYSICS HIGHLIGHT AT AFTER@LHC

- PDF in nucleon & nucleus (complementary to EIC, LHeC)
- Spin physics (QCD factorization, Boers-Mulder effect, Sivers efffect etc)
- Heavy-ion collisions (cold nuclear matter effect, QGP, azimuthal asymmetries)
- Exclusive reaction (ultra-peripheral collisions)
- Heavy quarkonium will play important role
 - Large yields
 - Easy to trigger (dilepton final states)

PHYSICS HIGHLIGHT AT AFTER@LHC

- PDF in nucleon & nucleus (complementary to EIC, LHeC)
- Spin physics (QCD factorization, Boers-Mulder effect, Sivers efffect etc)
- Heavy-ion collisions (cold nuclear matter effect, QGP, azimuthal asymmetries)
- Exclusive reaction (ultra-peripheral collisions)
- Heavy quarkonium will play important role
 - Large yields
 - Easy to trigger (dilepton final states)
- Selected relevant physics studies so far
 - Feasibility studies
 - Cold nuclear matter effect in pA
 - Spin physics: single spin asymmetry
 - Double parton scatterings


Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.'15)

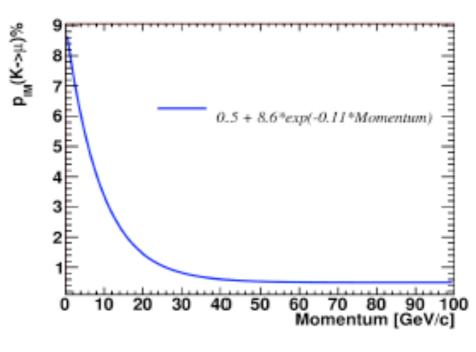
- First simulations of quarkonia at AFTER@LHC

 - Signal: Quarkonium
 - Background
 - Drell-Yan, open charm, open bottom, uncorrelated background
 - Events selection

Single μ cuts: $2 < \eta_{\mu} < 5$ Minimum $p_T^{\mu} > 0.7$ GeV/c

- Reconstruction condition
 - → momentum resolution: $\Delta p/p = 0.5\%$
 - → μ identification efficiency: 98%
 - μ misidentification (with π or K) for the uncorrelated background

Achilli et al. (JINST'13)


Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.'15)

- First simulations of quarkonia at AFTER@LHC

 - Signal: Quarkonium
 - Background
 - Drell-Yan, open charm, open bottom, uncorrelated background
 - Events selection

Single μ cuts: $2 < \eta_{\mu} < 5$ Minimum $p_T^{\mu} > 0.7$ GeV/c

- Reconstruction condition
 - → momentum resolution: $\Delta p/p = 0.5\%$
 - μ identification efficiency: 98%
 - μ misidentification (with π or K) for the uncorrelated background

Achilli et al. (JINST'13)

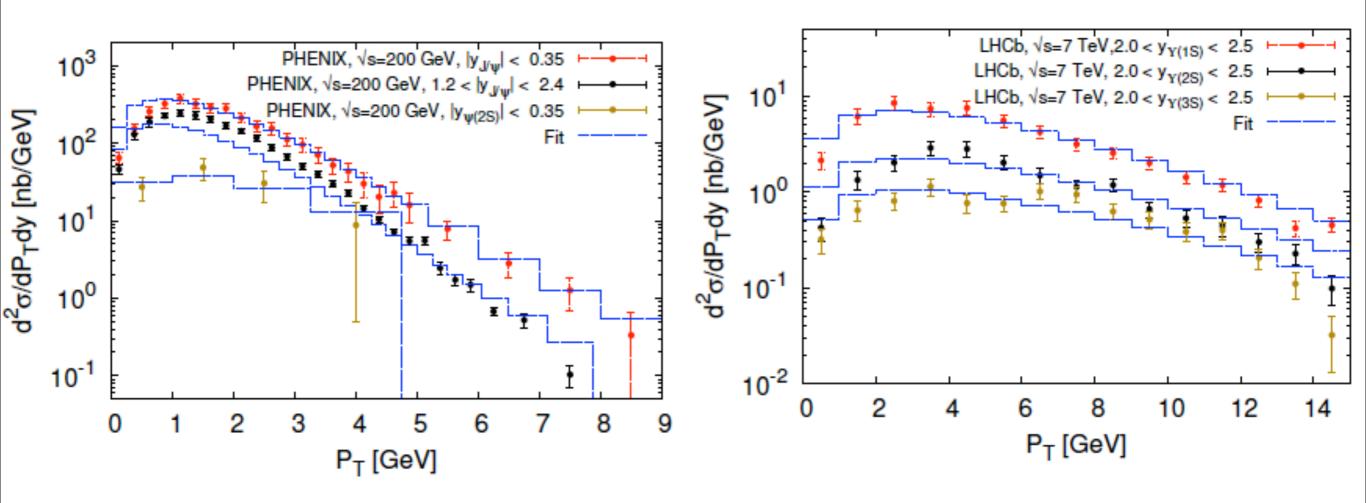
Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.'15)

- Signal simulations: a data-driven way
 - Quarkonium production amplitude in crystal ball function

$$\begin{split} & \overline{|\mathcal{A}_{gg \to Q+X}|^2} = \\ & \begin{cases} K \exp(-\kappa \frac{p_{\mathrm{T}}^2}{M_Q^2}) & \text{when } p_{\mathrm{T}} \leq \langle p_{\mathrm{T}} \rangle \\ K \exp(-\kappa \frac{\langle p_{\mathrm{T}} \rangle^2}{M_Q^2}) \left(1 + \frac{\kappa}{n} \frac{p_{\mathrm{T}}^2 - \langle p_{\mathrm{T}} \rangle^2}{M_Q^2}\right)^{-n} & \text{when } p_{\mathrm{T}} > \langle p_{\mathrm{T}} \rangle \end{cases} \end{split}$$

Kom, Kulesza, Stirling (PRL'11)

Model independent!

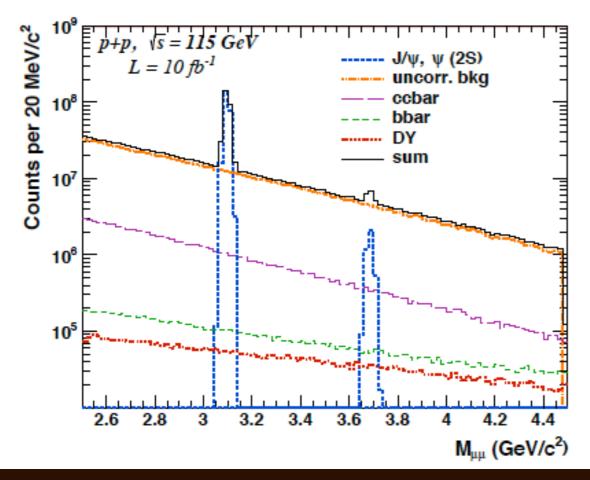


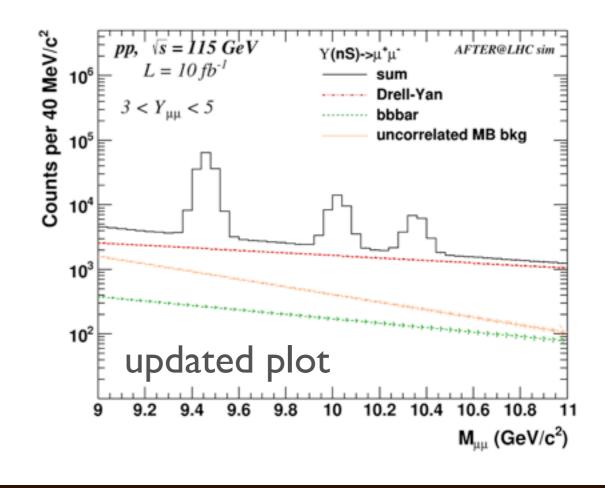
Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.'15)

- Signal simulations: a data-driven way
 - Quarkonium production amplitude in crystal ball function

Kom, Kulesza, Stirling (PRL'11)

Fit double differential distributions of the pp data

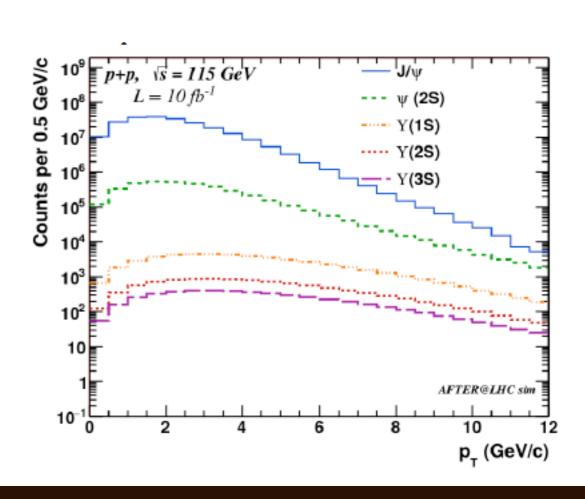



Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.'15)

- Signal simulations: a data-driven way
 - Quarkonium production amplitude in crystal ball function

Kom, Kulesza, Stirling (PRL'11)

- Fit double differential distributions of the pp data
- Simulations with background
 - Good separation of different quarkonium states

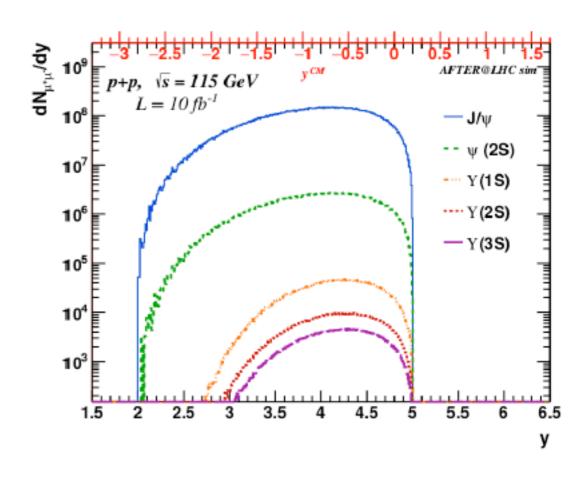


Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.'15)

- Signal simulations: a data-driven way
 - Quarkonium production amplitude in crystal ball function

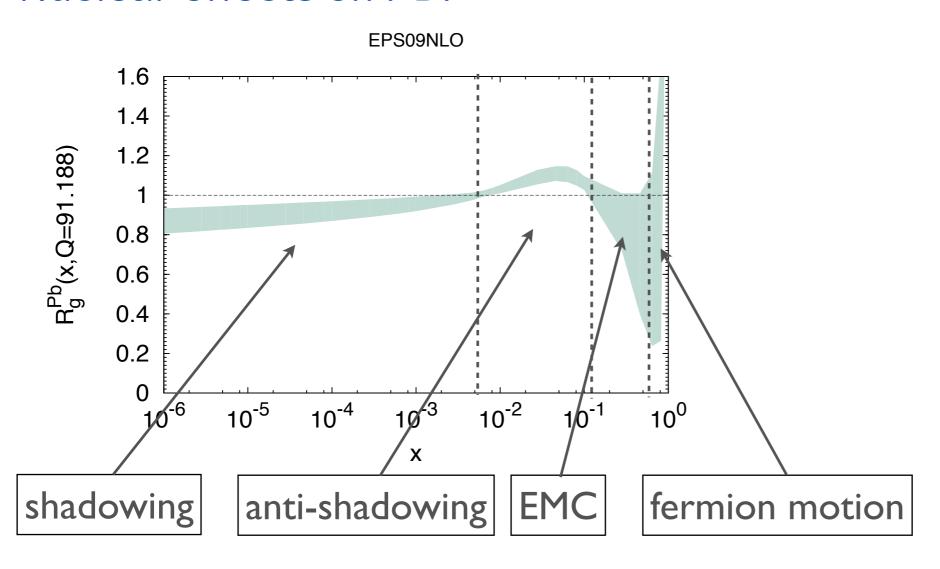
Kom, Kulesza, Stirling (PRL'11)

- Fit double differential distributions of the pp data
- Simulations with background
 - Good separation of different quarkonium states
- Differential distributions
 - J/ ψ and ψ (2S) signals can be studies up to $p_{T}\sim 15$ GeV/c, Υ (nS) up to ~ 10 GeV/c
 - → All quarkonium states can be measured down to 0 GeV/c

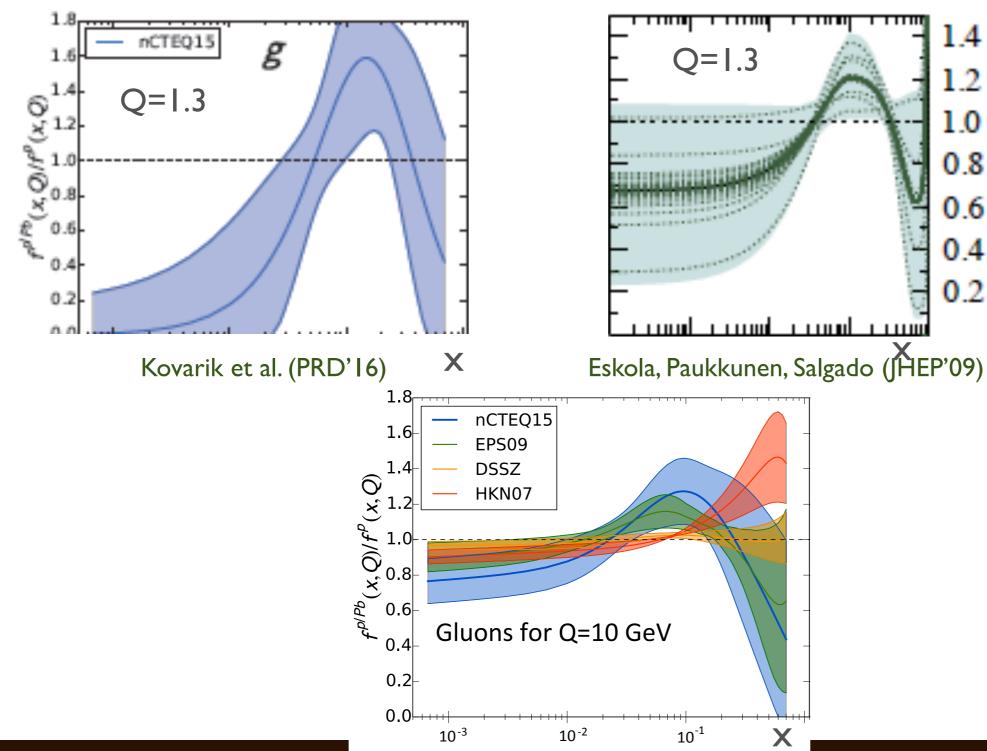


Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.'15)

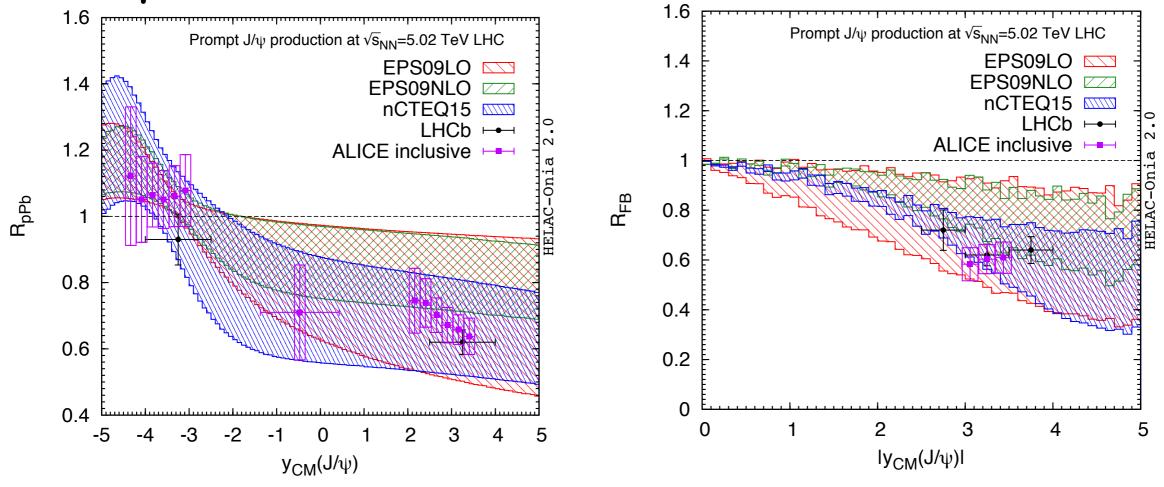
- Signal simulations: a data-driven way
 - Quarkonium production amplitude in crystal ball function


Kom, Kulesza, Stirling (PRL'11)

- Fit double differential distributions of the pp data
- Simulations with background
 - Good separation of different quarkonium states
- Differential distributions
 - J/ ψ and ψ (2S) signals can be studies up to $p_{T}\sim 15$ GeV/c, Υ (nS) up to ~ 10 GeV/c
 - → All quarkonium states can be measured down to 0 GeV/c
 - Study is limited to the rapidity range of 2 < y < 5 ($2 < \eta_u < 5$)
 - J/ ψ and ψ (2S) signals can be studies in the whole range, lowest y for Υ (nS) is $\sim 2.5-3$

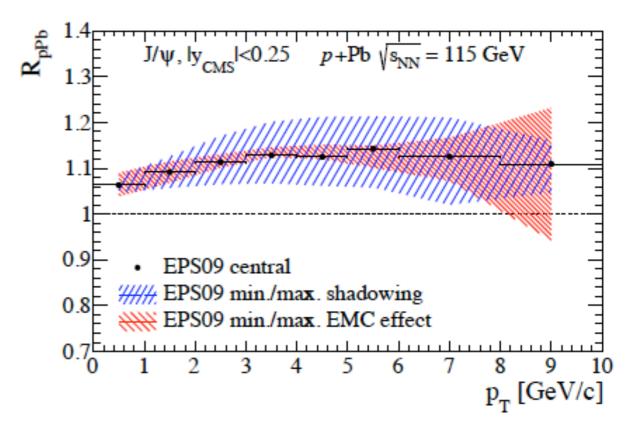


Nuclear effects on PDF



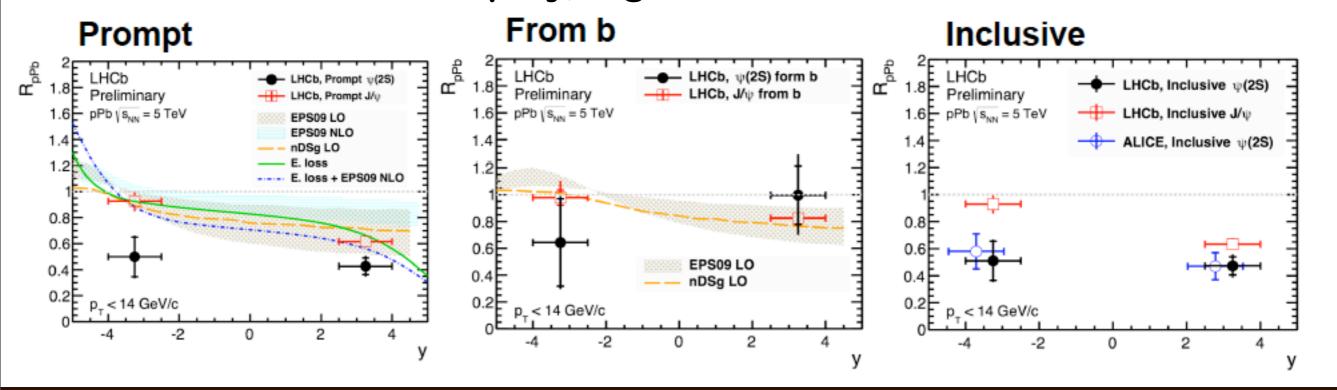
- Nuclear effects on PDF
 - Quite large uncertainties even in modern nuclear PDF


- Nuclear effects on PDF
 - Quite large uncertainties even in modern nuclear PDF
 - Not a precise test for the LHC collider data

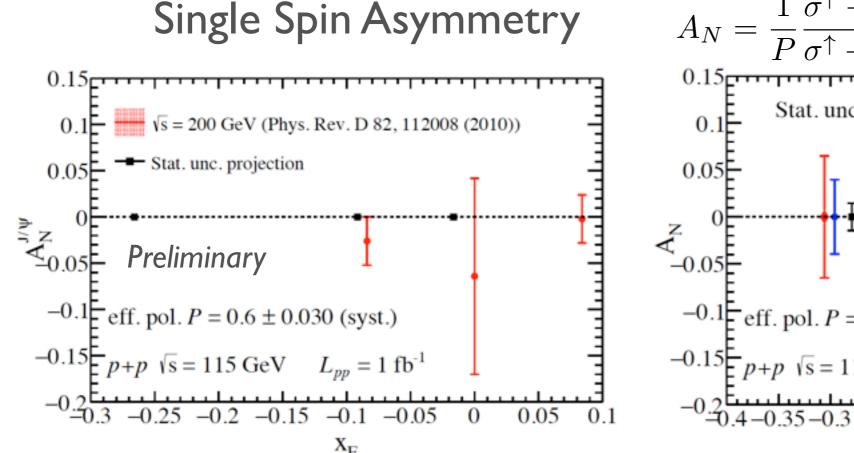


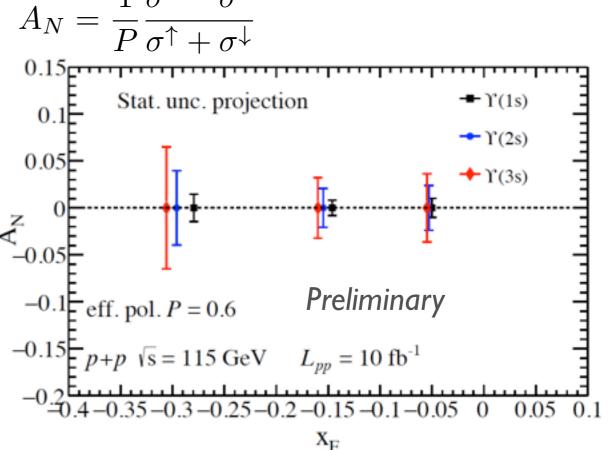
Lansberg, HSS (in prep.)

- Nuclear effects on PDF
 - Quite large uncertainties even in modern nuclear PDF
 - Not a precise test for the LHC collider data
 - Quarkonium help to constrain both small x (PbH) and large x (pPb)
 - Combination of measurements of quarkonium for -3<y $_{\text{CM}}$ <0 will allow to pin down the existence of a possible gluon EMC and antishadowing effect



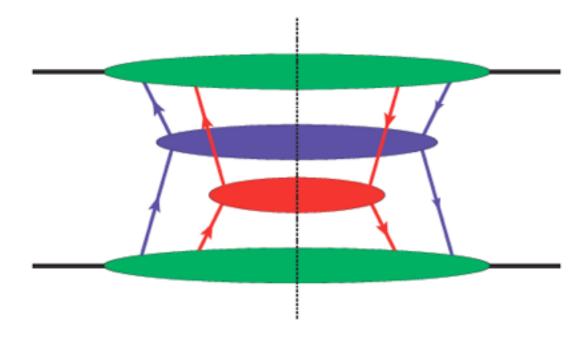
Massacrier, Trzeciak, Fleuret, Hadjidakis, Kikola, Lansberg, HSS (Adv. High Energy Phys.' 15)


- Nuclear effects on PDF
 - Quite large uncertainties even in modern nuclear PDF
 - Not a precise test for the LHC collider data
 - Quarkonium help to constrain both small x (PbH) and large x (pPb)
 - Combination of measurements of quarkonium for -3<y $_{\text{CM}}$ <0 will allow to pin down the existence of a possible gluon EMC and antishadowing effect
- Other cold nuclear matter effects
 - Larger suppression for excited quarkonium in the backward
 - Other mechanism at play, e.g. comovers Ferreiro (PLB'15) ? see B. Schmidt's talk

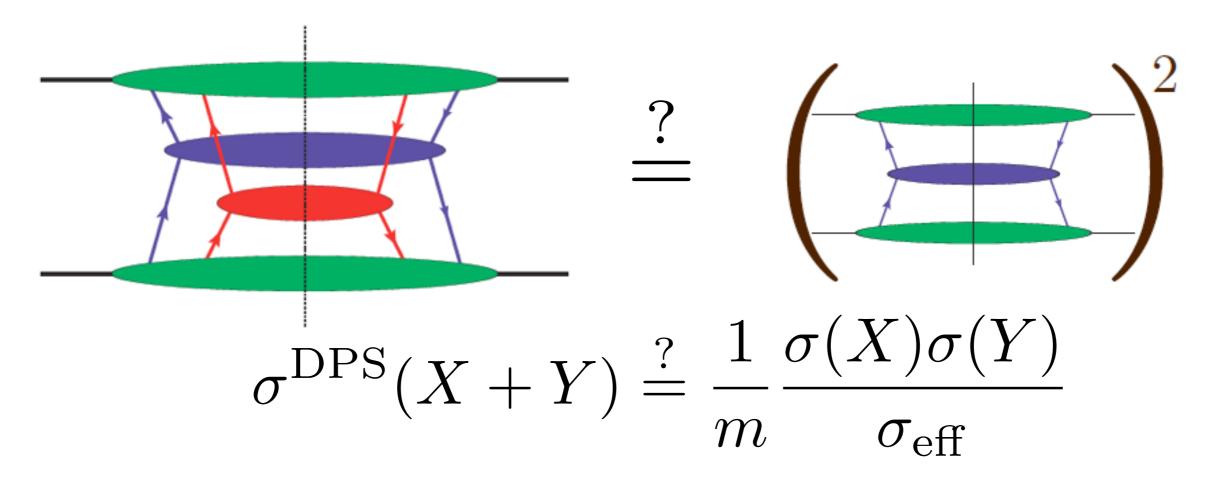


SPIN PHYSICS: SINGLE SPIN ASYMMETRY

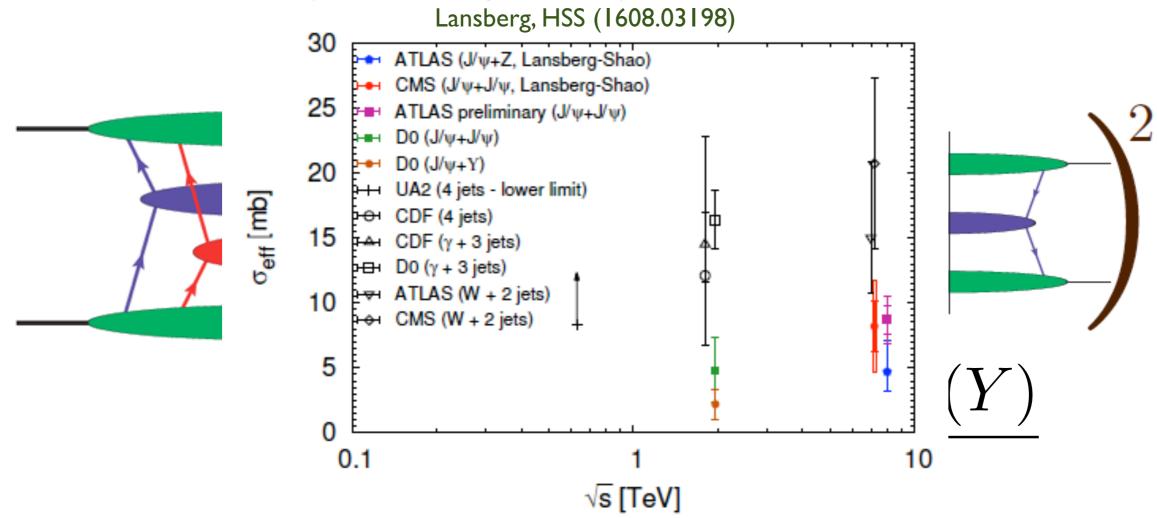
- Polarized target allows to study spin physics.
 - Gluon PDF in polarized proton $g_{p^\uparrow}(x,k_T) \doteq g_{p^\downarrow}(x,k_T)$ (Sivers effect)
 - Much larger Feynman |x_F| achievable compared with PHENIX
 - Much smaller stat. uncertainty (permille level)
 - First opportunity to observe single spin asymmetry in Upsilon
 - The precise verification of sign change of the Sivers function
 - SIDIS data (current only) vs more data (Drell-Yan, quarkonium etc)



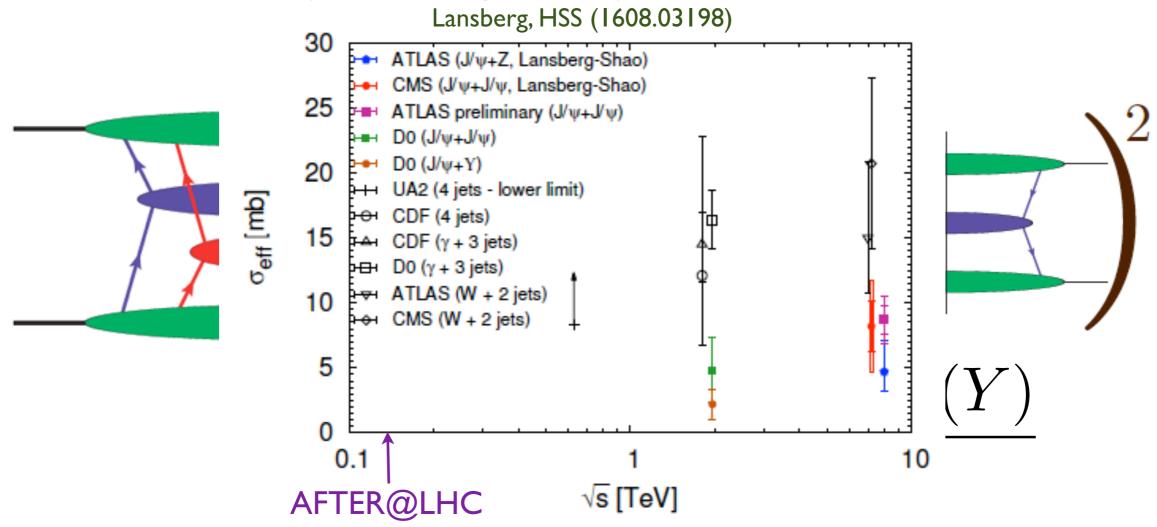
Expression of Interest in preparation



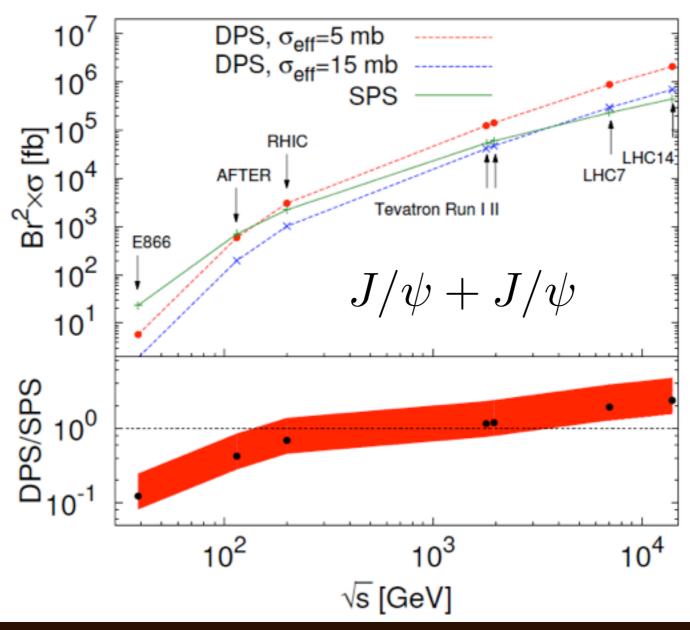
- Double Parton Hard Scatterings
 - An important production mode of particles in high-energy coll.



- Double Parton Hard Scatterings
 - An important production mode of particles in high-energy coll.
 - How to quantify its size?



- Double Parton Hard Scatterings
 - An important production mode of particles in high-energy coll.
 - How to quantify its size?
 - Universal $\sigma_{ ext{eff}}$? see I. Belyaev, D. Bertsche's talks
 - process independent?
 - energy independent?
 - initial flavor independent ? gluon = quark ?

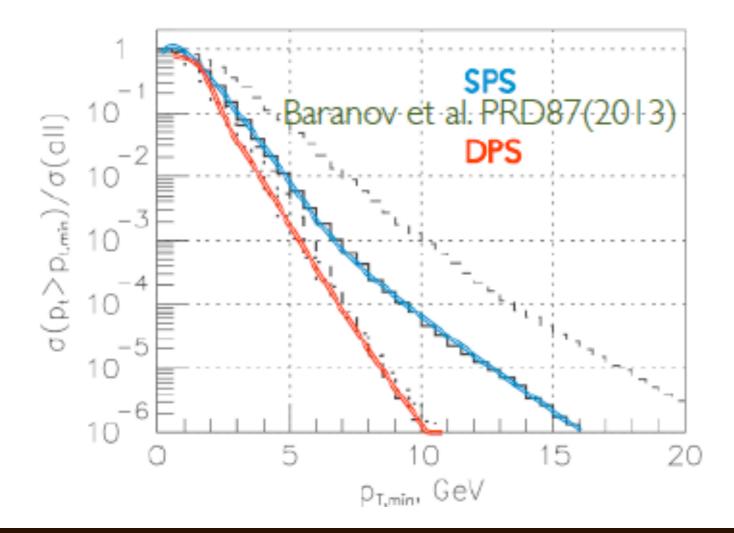


- Double Parton Hard Scatterings
 - An important production mode of particles in high-energy coll.
 - How to quantify its size?
 - Universal $\sigma_{\rm eff}$? see I. Belyaev, D. Bertsche's talks
 - process independent?
 - energy independent?
 - initial flavor independent ? gluon = quark ?

- Double Quarkonium Production at AFTER@LHC
 - First opportunity to measure it at \sqrt{s} ~100 GeV due to high luminosity

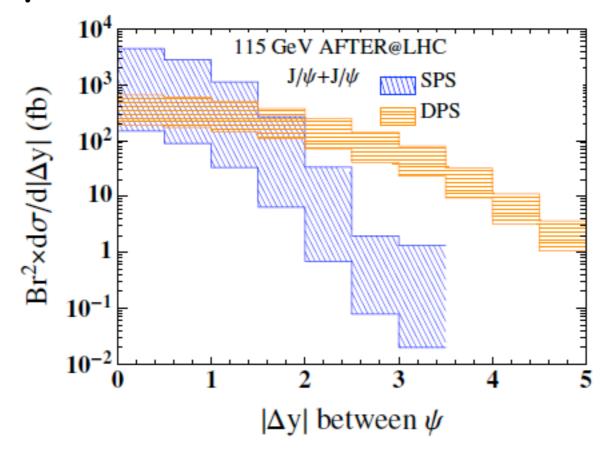
- Double Quarkonium Production at AFTER@LHC
 - First opportunity to measure it at \sqrt{s} ~100 GeV due to high luminosity
 - Only double charmonium is feasible
 - Other processes are not even observed yet in the LHC collider mode

$$\sigma(pp \to Q_1 + Q_2 + X) \times \mathcal{B}(Q_1 \to \mu^+\mu^-) \mathcal{B}(Q_2 \to \mu^+\mu^-) \text{ in units of fb at } \sqrt{s} = 115 \text{ GeV},$$


$$J/\psi + J/\psi \quad J/\psi + \psi(2S) \quad \psi(2S) + \psi(2S)$$

$$\sigma_{DPS} \quad 590^{+730}_{-210} \quad 19^{+23}_{-6.7} \quad 0.15^{+0.18}_{-0.052}$$

$$\sigma_{SPS}^{CSM} \quad 700^{+3600}_{-560} \quad 85^{+440}_{-6.8} \quad 2.5^{+13}_{-2.0}$$

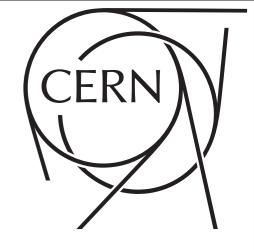


- Double Quarkonium Production at AFTER@LHC
 - First opportunity to measure it at \sqrt{s} ~100 GeV due to high luminosity
 - Only double charmonium is feasible
 - Other processes are not even observed yet in the LHC collider mode
 - Maintain the maximal DPS with p_T down to 0

- Double Quarkonium Production at AFTER@LHC
 - First opportunity to measure it at \sqrt{s} ~100 GeV due to high luminosity
 - Only double charmonium is feasible
 - Other processes are not even observed yet in the LHC collider mode
 - Maintain the maximal DPS with p_T down to 0
 - Much hope to separate SPS vs DPS via kinematical distributions

SUMMARY

- Many physics opportunities with AFTER@LHC
- Novel testing ground for QCD in the high-x frontier with AFTER@LHC
- Very high luminosities can be achieved and target versatility
- Heavy quarkonium will play an important role at AFTER@LHC
- Many ideas in favour of AFTER@LHC published
- First feasibility study performed
- New opportunities for studying nuclear effect, spin, DPS etc


14

Expression of Interest in preparation

Vielen Danken! Thank you for your attention!

BACK UP

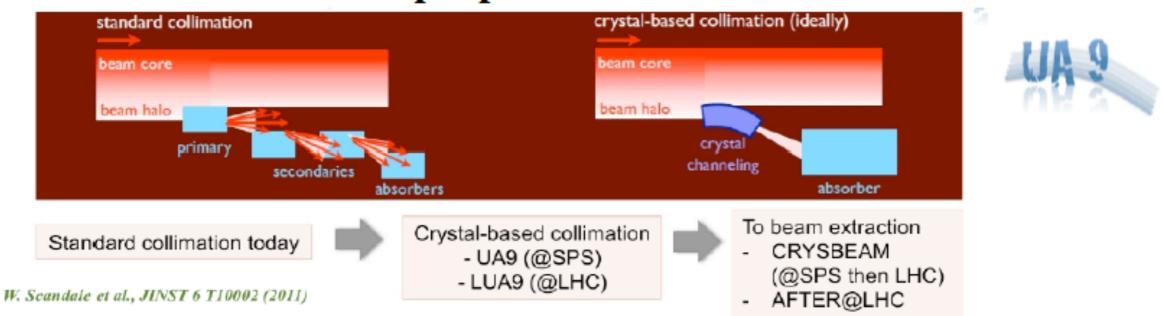
LUMINOSITIES: INTERNAL GAS TARGET

Luminosities in pH and pA with internal gas target

Beam	Target	Usable gas zone (cm)	Pressure (Bar)	L (μb ⁻¹ .s ⁻¹)	∫L (pb ⁻¹ .yr ⁻¹)
р	Perfect gas	100	10 ⁻⁹	10	100

With pressure of 10⁻⁶ mbar - 3 times SMOG – one gets 100 pb⁻¹ yr⁻¹

Luminosities in PbH and PbA with internal gas target

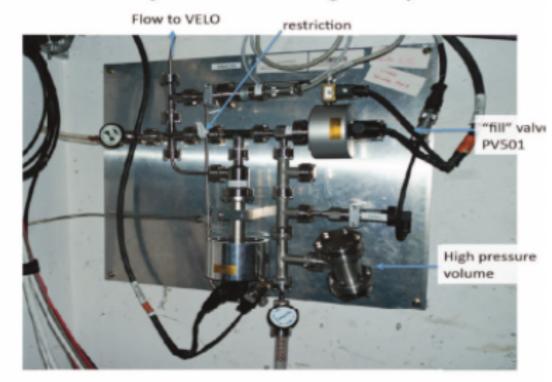

Beam	Target	Usable gas zone (cm)	Pressure (Bar)	L (µb ⁻¹ .s ⁻¹)	∫L (pb ⁻¹ .yr ⁻¹)
Pb	Perfect gas	100	10 ⁻⁹	0.001	0.001

$$P = 10^{-6} \, mbar$$

BEAM EXTRACTION WITH BENT CRYSTAL

Motivated for collimation purposes

Beam "split" with a bent crystal


- * beam collimation at LHC using bent crystals is studied by the UA9 collaboration
- * UA9 test @SPS of the crystal with proton and ion beams
- X LUA9 (beam bending experiment at LHC using crystal)
 - 2 bent crystals installed in IR7 during LS1, 2015/2016 tests with beams
- * proton beam extraction: single or multi-pass extraction efficiency, 50%
- x expected extracted p beam: 5 x 10⁸ p/s (LHC beam loss: ~10⁹ p/s)
- x expected extracted Pb beam: 2 x 10⁵ Pb/s

INTERNAL GAS TARGET WITH SMOG

Motivated for precise luminosity determination

SMOG: System for Measuring Overlap with Gas

→ injection of Ne-gas into VELO

- Low density noble gas injected into VELO in LHCb
- Short pNe pilot run at 87 GeV (2012)
- Short PbNe pilot run at 54 GeV (2013)
- He, Ne and Ar gas injected (2015)
- pNe, pAr run at 110 GeV (2015)
- 1.5 week of PbAr at 69 GeV (2015)

Limitations so far:

- Only noble gas
- Target polarization is not possible with SMOG