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The inclusive Higgs cross section

∼ 90% of the inclusive Higgs cross section comes from gluon fusion

The new LHCHXSWG recommendation for the ggH XS is based on the
Zurich result: (LHC 13 TeV, mH = 125 GeV)

σ = 48.58 pb = 16.00 pb (LO, rEFT)
+20.84 pb (NLO, rEFT)
+ 9.56 pb (NNLO, rEFT)
+ 1.49 pb (N3LO, rEFT)
− 2.05 pb ((t, b, c), exact NLO)
+ 0.34 pb (NNLO, 1/mt)
+ 2.40 pb (EW, QCD-EW)

[Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Lazopoulos,Mistlberger 1602.00695]

A long story 1977....2016...
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rEFT: Born-rescaled Effective Field Theory

Leading order [Wilczek 1977] [Georgi,Glashow,Machacek,Nanopoulos 1977]

Gluon Fusion
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dominant production mode
sensitive to heavy particle spectrum

R. Harlander ( BU Wuppertal ) Inclusive Higgs Cross Sections January 2012 31 / 42

The limit mt � mH is finite, and leads to an EFT
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Higgs in gluon fusion at LHC: perturbative (in)stability

 0

 10

 20

 30

 40

 50

 60

 70

 80

0.25 0.5 2 0.1  1  10  100

σ 
[p

b
]

µR/mH

mH = 125 GeV at LHC 13 TeV in the rEFT

LO
NLO

[Dawson 1991] [Djouadi,Spira,Zerwas 1991]

Marco Bonvini Theory precision for the ggH inclusive XS 5



Higgs in gluon fusion at LHC: perturbative (in)stability
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Beyond NNLO

Approximate N3LO

soft approximation (only log terms) [Moch,Vogt 2005]

soft + high-energy approximation [Ball,MB,Forte,Marzani,Ridolfi 2013]

soft + next-to-soft approximation [deFlorian,Mazzitelli,Moch,Vogt 2014]

Gluon luminosity, peaked at small x, enhances the partonic coefficient at large z

σgg = τ

∫ 1

τ

dz

z
Lgg

(τ
z

)
Cgg(z), τ =

m2
H

s

The soft z → 1 region dominates [Becher,Neubert,Xu 2007]

[MB,Forte,Ridolfi 2012]

Approximations based on the knowledge of this limit

Full N3LO
Wilson coefficient at N3LO [Chetyrkin,Kniehl,Steinhauser 1997] three loops [Baikov,

Chetyrkin,Smirnov,Smirnov,Steinhauser 2009] [Lee,Smirnov,Smirnov 2010] [Gehrmann,

Glover,Huber,Ikizlerli,Studerus 2010] one emission at two loops [Gehrmann,Jaquier,Glover,

Koukoutsakis 2012] [Duhr,Gehrmann 2013] [Li,Zhu 2013] one emission at one loop

[Anastasiou,Duhr,Dulat,Herzog,Mistlberger 2013] [Kilgore 2013] three emissions (soft

expansion) [Anastasiou,Duhr,Dulat,Mistlberger 2013] scale dependent terms [Anastasiou,

Bühler,Duhr,Herzog 2012] [Höschele,Hoff,Pak,Steinhauser,Ueda 2012] [Bühler,Lazopoulos

2013] two emissions at one loop [Li,vonManteuffel,Schabinger,Zhu 2014] all soft and

next-to-soft terms at N3LO [Anastasiou,Duhr,Dulat,Furlan,Gehrmann,Herzog,Mistlberger

2014] 37 terms in the soft expansion [Anastasiou,Duhr,Dulat,Herzog,Mistlberger 2015]

exact qq′ [Anzai,Hasselhuhn,Höschele,Hoff,Kilgore,Steinhauser,Ueda 2015]

threshold resummation [Catani,deFlorian,Grazzini,Nason 2003] [MB,Marzani 2014]

[Ahrens,Becher,Neubert,Yang 2008] [MB,Rottoli 2014]

[Schmidt,Spira 2015] [MB,Marzani,Muselli,Rottoli 2016]
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C(3)(z) = C
(3)
soft(z) +

5∑
k=0

logk(1− z)
/∞→37∑
j=0

ckj(1− z)j

threshold resummation [Catani,deFlorian,Grazzini,Nason 2003] [MB,Marzani 2014]
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Higgs in gluon fusion at LHC: perturbative (in)stability
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Interpretation and reliability of scale variation error

LHCHXSWG interpretation: 100% c.l. flat interval
LHCHXSWG alternative interpretation: 68% c.l. gaussian interval

Either interpretation is arbitrary — no statistical foundation

Criticisms:

close to stationary point → symmetrize error

the pattern at lower orders suggests that scale variation is not a
good estimator

sensitivity to the choice of the central scale

Alternatives?

Cacciari-Houdeau

probe higher orders with different contributions

revert to a different perturbative expansion

[MB,Marzani,Muselli,Rottoli 2016]
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Threshold resummation

Resums to all orders in αs logarithmic terms log(1− z) in the partonic coefficient

Cgg(N,αs)
N→∞
= g0

(
αs,

mH
mt

)
× expS(αs, lnN)

αsS(αs, lnN) = g1(αs lnN) + αsg2(αs lnN) + α2
sg3(αs lnN) + α3

sg4(αs lnN) + . . .

For years the LHCHXSWG recommendation was based on NNLO+NNLL
[Catani,deFlorian,Grazzini,Nason 2003] [deFlorian,Grazzini 2012]

NNLO+N3LL also available
dQCD: [MB,Marzani 2014] [Schmidt,Spira 2015]

SCET: [Ahrens,Becher,Neubert,Yang 2008] [MB,Rottoli 2014]

N3LO+N3LL recently released [MB,Marzani,Muselli,Rottoli 2016]

↓
42 variations
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Threshold resummed perturbative expansion
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Perturbative convergence sped up! [MB,Marzani,Muselli,Rottoli 2016]

Reduction of theory error increasing the order
Less sensitivity to central scale
More robust error estimate (statistical interpretation still missing...)
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PSR 2016, Paris, July 4-6, 2016

All Things Considered 20

CH: results

Figure 4. The CH (red) and CH (blue) errors on the LO, NLO, NNLO and N3LO cross sections for the four
scales µF = µR = mH/4, mH/2, mH, 2mH (from left to right). For the four values of the scales, the fitted values
of � are respectively 0.44, 0.46, 0.24, 0.17 for CH and 1.08, 1.14, 0.58, 0.41 for CH. Thicker bands correspond to
68% DoB, while thinner bands correspond to 95% DoB.

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

CH 48.1 ± 0.7(1.2) 48.1 ± 0.6(1.0) 46.5 ± 2.1(3.5) 44.3 ± 3.5(5.8)

CH 48.1 ± 1.2(1.9) 48.1 ± 1.2(2.0) 46.5 ± 4.2(7.0) 44.3 ± 6.9(11.5)

Table 4. N3LO results and their CH and CH uncertainties at 68% DoB (95% DoB in brackets).

are all of the same size. In fact, as we also confirmed, it is convenient to exclude the first coefficient
from the fit, on the ground that the LO result is not in line with the next orders (it is much smaller),
and the fact that this fit aims at guessing the asymptotic behaviour of the coefficients. In the results
that follow, we will then use for each method (CH and CH) the value of � obtained by such fit.

In Fig. 4 we show the four results at LO, NLO, NNLO and N3LO for the four scales µF = µR =

mH/4, mH/2, mH, 2mH, each with the two versions (CH and CH) of the Cacciari-Houdeau uncertainty.
We observe that the CH uncertainty is larger than the CH one at LO and NLO, but is smaller at NNLO
and N3LO: this effect originates from the factorial contribution, which changes the relative weight of the
individual orders in the determination of the uncertainty. In this respect, the CH uncertainty at N3LO
is more conservative than the CH one. We also note that the 68% DoB uncertainty (thicker band)
is able to cover the next order only at NNLO, while for lower orders only the 95% DoB uncertainty
(thinner band) works (except at LO for CH). We also see that for small scales µF = µR = mH/4, mH/2

the uncertainty shrinks considerably as the perturbative order increases, an indication that the series
is converging. For larger scales, µF = µR = mH, 2mH, the observed pattern is much worse and, as a
consequence, the uncertainty band of the N3LO is still large.

In Tab. 4 we report the value of N3LO cross section together with its uncertainty as obtained

– 16 –
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Application to the Higgs cross section

Idea 1: Choose some “good” algorithms and compute a guess for the
all-order cross section [David,Passarino 2013]

Idea 2: Choose many (≥ 100) algorithms and compute many guesses for
the all-order cross section. Do it for several choices of the central scale (the
sum must be the same). Observe. Decide. [MB,Marzani,Muselli,Rottoli 2016]

Note: statistical interpretation still missing, but not impossible...
Figure 5. Distributions of the Higgs cross section at 13 TeV as obtained using the various convergence acceler-
ation algorithms described in the text. Both the fixed-order (orange) and the resummed (blue) expansions are
shown, for the four scales µR = µF = mH/2 (top left), mH (top right), mH/4 (bottom left) and 2mH (bottom
right).

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

Fixed-order expansion 48.7 ± 1.0 48.7 ± 1.2 46.3 ± 4.6 44.6 ± 9.3

Resummed expansion 48.9 ± 0.5 48.9 ± 0.6 50.2 ± 1.0 52.6 ± 1.6

Table 5. Mean and standard deviation of the estimates of the all-order sum of the fixed-order (first row) and
resummed (second row) expansions, based on the set of convergence acceleration algorithms described in the
text.

All the numbers in Tab. 5 come from estimates of the all-order sum of the series, which should
be then the same for all scales and for both the fixed-order and the resummed expansions. They are
indeed all compatible within the quoted errors, except the resummed result at µ0 = 2mH which is
higher than most of the other results: this is just a consequence of the limited statistical meaning of
the error estimates, which does not take into account the shape of the distribution of the results, which
is rather asymmetric in this case. The smaller standard deviation on the resummed results shows once
again that the resummed series converges faster, as well as the smaller standard deviation on the
results at lower scales indicates that using µ0 = mH/2 or µ0 = mH/4 leads to a faster convergence, in

– 19 –
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‣ Cacciari-Hodeau

‣ Acceleration

Results

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

LO 18.6+5.8
�3.9 16.0+4.3

�3.1 13.8+3.2
�2.4 11.9+2.5

�1.9

NLO 44.2+12.0
�8.5 36.9+8.4

�6.2 31.6+6.3
�4.8 27.5+4.9

�3.9

NNLO 50.7+3.4
�4.6 46.5+4.2

�4.7 42.4+4.6
�4.4 38.6+4.4

�4.0

N3LO 48.1+0.0
�7.5 48.1+0.1

�1.8 46.5+1.6
�2.6 44.3+2.5

�2.9

LO+LL 24.0+8.9
�6.8 20.1+6.2

�5.0 16.9+4.5
�3.7 14.3+3.3

�2.8

NLO+NLL 46.9+15.1
�12.6 46.2+15.0

�13.2 46.7+20.8
�13.8 47.3+26.1

�15.8

NNLO+NNLL 50.2+5.5
�5.3 50.1+3.0

�7.1 51.9+9.6
�8.9 54.9+17.6

�11.5

N3LO+N3LL 47.7+1.0
�6.8 48.5+1.5

�1.9 50.1+5.9
�3.5 52.9+13.1

�5.3

Table 3. Fixed-order results and their scale uncertainty together with resummed results and their uncertainty
(as given by the envelope of prescription and scale variations) for four choices of the central scale.

Let us first comment the fixed-order results. Ignoring the LO which contains too few information
for being predictive, we can investigate the convergence pattern of the fixed-order perturbative ex-
pansion when going from NLO to NNLO and to N3LO, relative to the scale uncertainty. For “large”
central scales, µ0 = mH and µ0 = 2mH, NNLO is a large correction and its central value is not covered
by the NLO uncertainty band. The N3LO is a smaller correction, a sign that the series is converging
(at least asymptotically), but for µ0 = 2mH its central value is not covered by the NNLO uncertainty
band. For µ0 = mH/2, the convergence pattern is improved, now with the central NNLO contained in
the NLO band, and the central N3LO contained in the NNLO band. However, for instance, the central
N3LO and its band are not contained in the NLO band (they do not even overlap). At µ0 = mH/4 the
convergence pattern seems further improved, however the N3LO error is very asymmetric and large
(same size of the NNLO error). Additionally, the N3LO results at the four central scales shown in
Table 3 are barely compatible (if one had chosen µ0 = 4mH the result would not be compatible with
the one at µ0 = mH/2). This analysis shows that the estimate of the uncertainty from missing higher
orders using canonical 7-point scale variation is not reliable at fixed order.

On the other hand, resummation allows for a different way of estimating the effect of missing higher
orders, which is not purely based on scale variation. We observe that, for each choice of the central
scale µ0, the uncertainty of the resummed results from NLO+NLL onwards covers the central value
and at least a portion of the band of the next (logarithmic) order. In fact, with the exception of the
choice µ0 = mH/4 (the pathological behaviour of which seems to be driven by the N3LO contribution),
the NNLO+NNLL band is fully contained in the NLO+NLL band, and the N3LO+N3LL band is fully
contained in the NNLO+NNLL band. We also note a systematic reduction of the scale uncertainty
when going from one logarithmic order to the next.

We also observe that the resummed results at each order are all compatible among the different
choices of the central scale µ0, thereby showing little sensitivity on µ0. It is true that at extreme
choices of µ0 the error bands become very asymmetric and lead to higher values of the cross section at
large µ0 and to lower values of the cross section at small µ0; nevertheless, a region of overlap always
exists.

We note that our observations on the behaviour of the resummed results would still hold if one
considers a less conservative option, namely our default �-soft resummation with AP2 and the natural

– 11 –
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Marco Bonvini Understanding theoretical uncertainties 20

Results

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

LO 18.6+5.8
�3.9 16.0+4.3

�3.1 13.8+3.2
�2.4 11.9+2.5

�1.9

NLO 44.2+12.0
�8.5 36.9+8.4

�6.2 31.6+6.3
�4.8 27.5+4.9

�3.9

NNLO 50.7+3.4
�4.6 46.5+4.2

�4.7 42.4+4.6
�4.4 38.6+4.4

�4.0

N3LO 48.1+0.0
�7.5 48.1+0.1

�1.8 46.5+1.6
�2.6 44.3+2.5

�2.9

LO+LL 24.0+8.9
�6.8 20.1+6.2

�5.0 16.9+4.5
�3.7 14.3+3.3

�2.8

NLO+NLL 46.9+15.1
�12.6 46.2+15.0

�13.2 46.7+20.8
�13.8 47.3+26.1

�15.8

NNLO+NNLL 50.2+5.5
�5.3 50.1+3.0

�7.1 51.9+9.6
�8.9 54.9+17.6

�11.5

N3LO+N3LL 47.7+1.0
�6.8 48.5+1.5

�1.9 50.1+5.9
�3.5 52.9+13.1

�5.3

Table 3. Fixed-order results and their scale uncertainty together with resummed results and their uncertainty
(as given by the envelope of prescription and scale variations) for four choices of the central scale.

Let us first comment the fixed-order results. Ignoring the LO which contains too few information
for being predictive, we can investigate the convergence pattern of the fixed-order perturbative ex-
pansion when going from NLO to NNLO and to N3LO, relative to the scale uncertainty. For “large”
central scales, µ0 = mH and µ0 = 2mH, NNLO is a large correction and its central value is not covered
by the NLO uncertainty band. The N3LO is a smaller correction, a sign that the series is converging
(at least asymptotically), but for µ0 = 2mH its central value is not covered by the NNLO uncertainty
band. For µ0 = mH/2, the convergence pattern is improved, now with the central NNLO contained in
the NLO band, and the central N3LO contained in the NNLO band. However, for instance, the central
N3LO and its band are not contained in the NLO band (they do not even overlap). At µ0 = mH/4 the
convergence pattern seems further improved, however the N3LO error is very asymmetric and large
(same size of the NNLO error). Additionally, the N3LO results at the four central scales shown in
Table 3 are barely compatible (if one had chosen µ0 = 4mH the result would not be compatible with
the one at µ0 = mH/2). This analysis shows that the estimate of the uncertainty from missing higher
orders using canonical 7-point scale variation is not reliable at fixed order.

On the other hand, resummation allows for a different way of estimating the effect of missing higher
orders, which is not purely based on scale variation. We observe that, for each choice of the central
scale µ0, the uncertainty of the resummed results from NLO+NLL onwards covers the central value
and at least a portion of the band of the next (logarithmic) order. In fact, with the exception of the
choice µ0 = mH/4 (the pathological behaviour of which seems to be driven by the N3LO contribution),
the NNLO+NNLL band is fully contained in the NLO+NLL band, and the N3LO+N3LL band is fully
contained in the NNLO+NNLL band. We also note a systematic reduction of the scale uncertainty
when going from one logarithmic order to the next.

We also observe that the resummed results at each order are all compatible among the different
choices of the central scale µ0, thereby showing little sensitivity on µ0. It is true that at extreme
choices of µ0 the error bands become very asymmetric and lead to higher values of the cross section at
large µ0 and to lower values of the cross section at small µ0; nevertheless, a region of overlap always
exists.

We note that our observations on the behaviour of the resummed results would still hold if one
considers a less conservative option, namely our default �-soft resummation with AP2 and the natural

– 11 –
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‣ Scale Variations

The answer to the ultimate question 
of life, the universe and everything

slide by Luca Rottoli
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σ = 48.58 pb = 16.00 pb (LO, rEFT)
+20.84 pb (NLO, rEFT)
+ 9.56 pb (NNLO, rEFT)
+ 1.49 pb (N3LO, rEFT)
− 2.05 pb ((t, b, c), exact NLO)
+ 0.34 pb (NNLO, 1/mt)
+ 2.40 pb (EW, QCD-EW)
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Quark mass effects

top quark beyond LO and light quarks:

NLO: exact result for any quark [Spira,Djouadi,Graudenz,Zerwas 1995]

NNLO: top quark mass effects as an expansion in 1/mt

[Harlander,(Mantler,Marzani),Ozeren 2009(10)] [Pak,Rogal,Steinhauser 2009]

Numerical impact:

top mass corrections (corrections to rEFT)

σexact, only top − σrEFT = 0 LO
−0.24 pb NLO
+0.34 pb NNLO (1/mt corrections)

for comparison, the corrections to the pure EFT are

σexact, only top − σEFT = +0.95 pb LO
+0.99 pb NLO
+0.90 pb NNLO (1/mt corrections)

rEFT much closer to exact than pure EFT!
Marco Bonvini Theory precision for the ggH inclusive XS 20



Quark mass effects

bottom and charm corrections

σexact, t+b+c − σexact, only top = −1.17 pb LO
−0.66 pb NLO

Uncertainty due to missing b, c effects beyond NLO:

option 1 (Zurich): take the relative effect at O(αs) (NLO) and apply to
the O(α2

s)

| − 0.66 pb|
σNLO − σLO

× (σNNLO − σNLO) = 0.32 pb

Enlarge by factor 1.3 to take into account differences between MS and
pole masses: ±0.40 pb
option 2: take the NLO effect (±0.66 pb) as the uncertainty

Uncertainty due to missing 1/mt corrections: ±1% = ±0.49 pb

Parametric uncertainties due to quark masses are negligible
Marco Bonvini Theory precision for the ggH inclusive XS 21



Quark mass effects at resummed level

Threshold resummation

Cgg(N,αs)
N→∞
= g0

(
αs,

mH

mt
, mH

mb
, . . .

)
× expS(αs, lnN)

quark mass dependence appears only in g0, and is determined by
matching to fixed order.

include in g0 all known mass dependent terms
[deFlorian,Grazzini 2012] [MB,Marzani 2014]

include only the exact top at NLL only [Schmidt,Spira 2015]

Motivation: bottom quarks generate additional logarithms in g0 that
are not resummed → fixed order treatment is preferred
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σ = 48.58 pb = 16.00 pb (LO, rEFT)
+20.84 pb (NLO, rEFT)
+ 9.56 pb (NNLO, rEFT)
+ 1.49 pb (N3LO, rEFT)
− 2.05 pb ((t, b, c), exact NLO)
+ 0.34 pb (NNLO, 1/mt)
+ 2.40 pb (EW, QCD-EW)
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Electroweak corrections

Cross section gets EW corrections as well:

σ = σ0

[
1 + αsσ1 + α2

sσ2 + α3
sσ3 + . . .+ αλEW(1 + αss1 + . . .) + α2 · · ·

]

Additive approach + mixed QCD-EW (Zurich):
Estimate s1 from an EFT (mH � mZ,W ) [Anastasiou,Boughezal,Petriello 2008]

Gives a +4.9% effect
Uncertainty estimated by varying s1: ±1%

Complete factorization: [Actis,Passarino,Sturm,Uccirati 2008]

σ = σ0(1 + αλEW)
[
1 + αsσ1 + α2

sσ2 + α3
sσ3 + . . .

]

Gives a +5.1% effect
Uncertainty estimated by comparing the complete factorized result to the
additive one: ±2.5%
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Missing N3LO PDFs

All results are computed with NNLO PDFs.

What’s the expected impact of N3LO PDFs?

Compare at NNLO the difference between NNLO and NLO PDFs

σNNLO(NNLO PDFs)− σNNLO(NLO PDFs)

σNNLO(NNLO PDFs)

and use half this value (Zurich)
Gives ±0.56 pb

Cacciari-Houdeau approach [Forte,Isgrò,Vita 2013]

Sequence:

σN3LO(LO PDFs), σN3LO(NLO PDFs), σN3LO(NNLO PDFs)

Gives a ±1 pb at 68% DoB
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PDF + αs uncertainty

PDF4LHC 15 prescription
(using the hessian set PDF4LHC15 nnlo 100)

Gives ±1.56 pb

Sum in quadrature of
±0.90 pb from PDFs and
±1.26 pb from αs = 0.1180± 0.0015
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Conclusions

The inclusive ggH cross section is a hot topic

codes
ggHiggs

SusHi

ihixs

HIGLUE

TROLL

RGHiggs

State of the art (after 40 years):

N3LO QCD large-mt EFT

NLO QCD exact

NNLO QCD top mass corrections

NLO EW + mixed NLO QCD-EW in the EFT

N3LL threshold resummation (QCD)

LHCHXSWG recommendation:

σ = 48.6+2.2
−3.3 pb (theory)± 1.56 pb (PDF+αs)

Some theory uncertainties are subject to debate

General (personal) comment: a robust and statistically sound way of
assessing theory uncertainties is called for
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https://www.ge.infn.it/~bonvini/higgs
http://sushi.hepforge.org
https://people.phys.ethz.ch/~pheno/ihixs/
http://arxiv.org/abs/hep-ph/9510347
https://www.ge.infn.it/~bonvini/troll
http://rghiggs.hepforge.org 
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Factorization scale dependence
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Soft expansion

all
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Figure 3: The numerical e↵ect in Setup 1 of the N3LO correction in the main partonic channels

and the total cross-section as a function of the truncation order in the threshold expansion, for

n = 0 in eq. (3.6).

the convolution (3.6). This leads to a slower apparent convergence, at least in the case

where only a few terms are taken into account in the threshold expansion. While the

spread between the di↵erent curves gives a measure for the quality of the convergence of

the threshold expansion, we know of no compelling argument why any of this curves should

be preferable over others at this order of the expansion. We observe, however, that the

di↵erent curves agree among each other within a range of 0.1 pb, thereby corroborating

our claim that the threshold expansion provides reliable results for the N3LO cross-section.

In Fig. 3 we plot the N3LO corrections for the gg and qg channels2, as well as the total

inclusive cross-section, as a function of the truncation order (for n = 0). The quark-initiated

channels contribute only a small fraction to the inclusive cross-section. The convergence of

the threshold expansion for these channels is less rapid than for the dominant gluon-gluon

channel. This is better demonstrated in Fig. 4, where we plot the ratio

�X(N) ⌘
�

(3)
X,EFT (N) � �

(3)
X,EFT (Nlast)

�
(3)
X,EFT (Nlast)

100% . (3.8)

Here, �
(3)
X,EFT (N) denotes the contribution of the partonic channel X to the N3LO correc-

tion to the hadronic cross-section when computed through O(z̄N ) in the threshold expan-

sion. Nlast (equal to 37) is the highest truncation order used in our current computation.

Although the convergence of the quark-gluon and the quark channels is rather slow, the

2We sum of course over all possible quark and anti-quark flavours.

– 10 –
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Improved threshold resummation

Standard dQCD resummation gives

Cgg(N,αs)
N→∞
= g0

(
αs,

mH
mt

)
× expS(αs, lnN)

αsS(αs, lnN) = g1(αs lnN) + αsg2(αs lnN) + α2
sg3(αs lnN) + α3

sg4(αs lnN) + . . .

[Sterman 1987] [Catani, Trentadue 1989] [Forte, Ridolfi 2003]

Resums lnj N , contains constants (corresponding to δ(1− z)), and nothing else.

Resummation doesn’t fix subleading contributions suppressed by 1/N !

Can be improved taking into account [MB,Marzani 2014]

exact single gluon emission kinematics

lnN → ψ0(N)

collinear contributions from the full splitting function Pgg

N → N + 1 (in its simplest form)

exponentiation of (some) constants
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π2 resummation

[Ahrens,Becher,Neubert,Yang 2008]3

with

S(−µ2, µ2) = −
αs(µ2)∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)

α∫

αs(−µ2)

dα′

β(α′)
,

aΓ(−µ2, µ2) = −
αs(µ2)∫

αs(−µ2)

dα
ΓA

cusp(α)

β(α)
,

(19)

and similarly for the function aγS . The perturba-
tive expansions of these functions obtained at NNLO in
renormalization-group improved perturbation theory can
be found in [20]. They can be simplified using relation
(16). To leading order we find

lnU(m2
H , µ2) =

ΓA
0

2β2
0

{
4π

αs(m2
H)

[
2a arctan(a) − ln(1 + a2)

]

+

(
ΓA

1

ΓA
0

− β1

β0
− γS

0 β0

ΓA
0

)
ln(1 + a2) (20)

+
β1

4β0

[
4 arctan2(a) − ln2(1 + a2)

]
+ O(αs)

}
,

where a ≡ a(m2
H). Note that the result is µ-independent at

this order. The relevant anomalous-dimension coefficients
are ΓA

0 = 4CA, γS
0 = 0, and

ΓA
1

ΓA
0

=

(
67

9
− π2

3

)
CA − 20

9
TF nf , (21)

where CA = Nc, TF = 1/2, and nf = 5 is the number
of light quark flavors. The coefficients of the β-function
follow from (14).

The expression for the evolution function simplifies con-
siderably if we treat a(m2

H) ≈ 0.2 as a parameter of order
αs. Inserting the values of the one-loop anomalous dimen-
sions from above, we then find

lnU(m2
H , µ2) =

CAπαs(m
2
H)

2

[
1 +

ΓA
1

ΓA
0

αs(m
2
H)

4π
+ O(α2

s)

]
.

(22)
This result makes explicit that the “π2-enhanced” correc-
tions are terms of the form (CAπαs)

n in perturbation the-
ory and exponentiate at leading order. The simplest way
to implement our resummation in existing codes for Higgs-
boson production would be to multiply the fixed-order re-
sult with exp[CAπαs(m

2
H)/2] and subtract the expanded

form of this factor from the perturbative series. This treat-
ment is sufficient for practical purposes.

Numerically, setting µ = mH = 120GeV we obtain
lnU = {0.563, 0.565, 0.565} at LO, NLO, and NNLO from
the exact expression for the evolution function derived from
(18), indicating that the leading-order terms give by far
the dominant effect after renormalization-group improve-
ment. The analytical expressions (20) and (22) provide
accurate approximations to the exact results. The first
equation gives lnU = 0.562, while the second one yields
lnU = 0.567. The close agreement of these two numbers
shows that the running of coupling constant between µ2

fixed order
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FIG. 1: LO (light), NLO (medium), and NNLO (dark) pre-
dictions for the Higgs-production cross section at the LHC in
fixed-order perturbation theory (left) and after resummation of
the π2-enhanced terms (right).

and −µ2 is a minor effect compared with the evolution
driven by the anomalous dimension of the effective two-
gluon operator in (2).

We are now in a position to discuss our improved results
for the hard function in the formula for the Higgs-boson
production cross section. Setting µ = mH = 120GeV, we
obtain

H(m2
H , m2

H) = {1.756 (LO), 1.907 (NLO), 1.906 (NNLO)} .
(23)

This should be compared with the poorly converging series
H = {1, 1.623, 1.844} obtained using fixed-order perturba-
tion theory. Figure 1 illustrates the impact of the resumma-
tion of the π2-enhanced terms on the cross-section predic-
tions for Higgs-boson production at the LHC. The bands in
each plot show results obtained at LO, NLO, and NNLO
using MRST2004 parton distributions [21]. Their width
reflects the scale variation obtained by varying the factor-
ization and renormalization scales between mH/2 and 2mH

(setting µr = µf ). The convergence of the expansion and
the residual scale dependence at NLO and NNLO are much
improved by the resummation. The new LO and NLO
bands almost coincide with the NLO and NNLO bands in
fixed-order perturbation theory, and the new NNLO band
is now fully contained inside the NLO band.

IV. DRELL-YAN PRODUCTION

The cross section for the Drell-Yan process receives the
same type of π2-enhanced corrections as the Higgs-boson
production cross section, however in this case no anoma-
lously large K-factors arise at NLO and NNLO. Let us
briefly discuss why this is the case.

The vector-current matching coefficient CV appearing in
the Drell-Yan case is defined in analogy with CS in (2), but
with the two-gluon operator replaced by the electromag-
netic current q̄γµq [9, 10, 11]. It obeys an evolution equa-
tion of the same structure as (6), in which the cusp anoma-
lous dimension in the adjoint representation is replaced by
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Sequence transformations according to Weniger

G(n)
k (qm, sn, �n) =

k

�
j=0

(�1)j
�

k
j

� k�1

�
m=1

n + j + qm

n + k + qm

sn+j

�n+j

k

�
j=0

(�1)j
�

k
j

� k�1

�
m=1

n + j + qm

n + k + qm

1
�n+j

Very wide class of sequence transformation

Idea (Stirling, Euler): speed up convergence by applying a transformation to the sequence sn

Application to the inclusive Higgs cross section

Choose some good algorithms and compute some guesses

Choose many O(100) algorithms and compute many guesses

David, Passarino 2013

Bonvini, Marzani, Muselli, LR 2016

‣ No information on the asymptotic behaviour of the series, so it is not clear 
how to prefer an algorithm rather than another 

‣ Result should not depend on the scale

16

lim
n��

s�n � s
sn � s

= 0 slide by Luca Rottoli
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Higgs cross section results
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The Cacciari-Houdeau approach I believe that we do not know anything 
for certain, but everything probably 
(Christiaan Huygens)

18

Statistical model for the interpretation of theory errors, from which one can 
compute the uncertainty on the truncated perturbative series for a given degree of 
belief (DoB) given the first terms in the expansion. 

Probability density for �

� = �LO

�

�
k=0

bk(�, k0)(k + k0)!
��s

�

�k

Possible power growth

Possible factorial growth

Cacciari, Houdeau (2011)

Bagnaschi, Cacciari, Guffanti, Jenniches (2014)

Determination of λ 

‣ Survey over several observables (assumes λ is process-independent)  

‣ fit λ requiring the first known coefficients are of the same size 
Bagnaschi, Cacciari, Guffanti, Jenniches (2014)

Forte, Isgrò, Vita (2013)

� = �LO

�

�
k=0

ck(�)
��s

�

�k

CH

CH

slide by Luca Rottoli
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Higgs cross section results 19

CH: results
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Figure 4. The CH (red) and CH (blue) errors on the LO, NLO, NNLO and N3LO cross sections for the four
scales µF = µR = mH/4, mH/2, mH, 2mH (from left to right). For the four values of the scales, the fitted values
of � are respectively 0.44, 0.46, 0.24, 0.17 for CH and 1.08, 1.14, 0.58, 0.41 for CH. Thicker bands correspond to
68% DoB, while thinner bands correspond to 95% DoB.

µ0 = mH/4 µ0 = mH/2 µ0 = mH µ0 = 2mH

CH 48.1 ± 0.7(1.2) 48.1 ± 0.6(1.0) 46.5 ± 2.1(3.5) 44.3 ± 3.5(5.8)

CH 48.1 ± 1.2(1.9) 48.1 ± 1.2(2.0) 46.5 ± 4.2(7.0) 44.3 ± 6.9(11.5)

Table 4. N3LO results and their CH and CH uncertainties at 68% DoB (95% DoB in brackets).

are all of the same size. In fact, as we also confirmed, it is convenient to exclude the first coefficient
from the fit, on the ground that the LO result is not in line with the next orders (it is much smaller),
and the fact that this fit aims at guessing the asymptotic behaviour of the coefficients. In the results
that follow, we will then use for each method (CH and CH) the value of � obtained by such fit.

In Fig. 4 we show the four results at LO, NLO, NNLO and N3LO for the four scales µF = µR =

mH/4, mH/2, mH, 2mH, each with the two versions (CH and CH) of the Cacciari-Houdeau uncertainty.
We observe that the CH uncertainty is larger than the CH one at LO and NLO, but is smaller at NNLO
and N3LO: this effect originates from the factorial contribution, which changes the relative weight of the
individual orders in the determination of the uncertainty. In this respect, the CH uncertainty at N3LO
is more conservative than the CH one. We also note that the 68% DoB uncertainty (thicker band)
is able to cover the next order only at NNLO, while for lower orders only the 95% DoB uncertainty
(thinner band) works (except at LO for CH). We also see that for small scales µF = µR = mH/4, mH/2

the uncertainty shrinks considerably as the perturbative order increases, an indication that the series
is converging. For larger scales, µF = µR = mH, 2mH, the observed pattern is much worse and, as a
consequence, the uncertainty band of the N3LO is still large.

In Tab. 4 we report the value of N3LO cross section together with its uncertainty as obtained

– 16 –
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Pascal bet on the existence of God basing on calculation of probabilities, we use calculation 
of probabilities to bet on the value of the cross section of the God’s particle Higgs

slide by Luca Rottoli
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Scale dependence of resummed result
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