Bosonic SM Higgs decays at ATLAS + CMS

On behalf of the ATLAS & CMS collaboration

he LHC

Higgs decays

ATLAS (Run1)	Exp. yield	Resolution	S/B	
Η→γγ	~450	σ(m _H)~1-2%	~3%	
$H \rightarrow ZZ^{*}(4l)$	~20	σ(m _H)~1-2%	~1.6	
$H \rightarrow WW^*(2l2v)$	~500	σ(m _T)~20%	~15%	
$H \rightarrow \tau \tau$	~300	σ(m _H)~10-20%	~1-30%	
H→bb	~400	σ(m _H)~10-20%	~1-10%	

he LHC

Higgs decays

Highlight on the Higgs bosonic decays

Channels with excellent mass resolution/signal-tobackground ratio or high yield

ATLAS (Run1)	Exp. yield	Resolution	S/B	
Н→үү	~450	σ(m _H)~1-2%	~3%	
H→ZZ*(4l)	~20	σ(m _H)~1-2%	~1.6	5
$H \rightarrow WW^*(2l2v)$	~500	σ(m _T)~20%	~15%	,
$H{ ightarrow} au au$	~300	σ(m _H)~10-20%	~1-30%	
H→bb	~400	σ(m _H)~10-20%	~1-10%	

Higgs Mass/Coupling

First ATLAS and CMS Combination: m_H=125.09±0.21(stat.)± 0.11(sys.)GeV

Further combined measurement of Higgs production/decay rates and coupling with $m_H=125.09$ GeV with 6 channels: the global signal strength is 1.09±0.11.

The Higgs Boson width

ATLAS and CMS are insensitive to the direct Higgs width measurement (Γ_{SM}~4.2MeV which is too small for the detector resolution)

EPJC 75 (2015) 212

3-order of magnitude larger than SM width

3.4 (2.8) GeV

2.4 (3.1) GeV

CMS

At the LHC, it is impossible to extract the coupling and Higgs width separately from on-shell cross section measurement.

- Indirect Higgs width constraint with the combination between on-shell and off-shell analysis under the following assumptions:
 - $\mu_{on-shell} = \mu_{off-shell}$
 - No BSM particle or interactions affect the Higgs coupling and SM background expectation

$$R_{H^*}^b = \frac{K_{gg \to VV}}{K_{gg \to H^* \to VV}} = 1$$

arxiv:1605.02329, EPJC 75,335 (2015)

$\Gamma_{\rm H} = $ obs.(exp.) 95%CL	CMS	ATLAS
H→ZZ→4l		
$H \rightarrow ZZ^* \rightarrow 2l2v$	13(26)MeV	22.7(33.0)MeV
H→WW*→lvlv		

rai

The Spin-Parity of the Higgs Boson

Clear SM prediction for Higgs Boson quantum Numbers: J^{pc} = 0⁺⁺

• All alternative hypotheses excluded to more than 99.9% CL.

Arbitrary normalisatior 10³ **ATLAS** ATLAS $H \rightarrow ZZ^* \rightarrow 4l$ $H \rightarrow ZZ^* \rightarrow 4l$ 10³ Scalar SM $\stackrel{H}{\rightarrow}$ $\stackrel{evuv}{\rightarrow}$ $\stackrel{evuv}{\rightarrow$ $H \rightarrow WW^* \rightarrow evuv$ s = 8 TeV, 20.3 fb⁻¹ 10 $H \rightarrow \gamma \gamma$ $H \rightarrow \gamma \gamma$ Arbi s = 7 TeV. 4.5 fb⁻¹ $s = 7 \text{ TeV}, 4.5 \text{ fb}^{-1}$ s = 8 TeV, 20.3 fb⁻¹ s = 8 TeV, 20.3 fb 10⁻¹ 10⁻¹

CP Mixing

The observed Higgs boson is compatible with a standard CP-even

Fiducial/Differential Cross section measurement

- Measurement designed as model independent as possible.
- Direct comparison with theoretical predictions at particle level.
- A wide and diverse range of physical phenomena to be probed:
 - Higgs boson kinematics, Jet activity, VBF-sensitive variables, Spin-CP sensitive variables

Total Higgs production cross section

PRL 115, 091801 (2015)

Constraint on non-SM interactions with differential cross sections

Procedure: simultaneous fit on 5 sensitive differential distributions and set limit on the Wilson coefficients:

- No significant deviation from the SM
- More stringent constraint on the HVV Tensor structure with a factor of 7 w.r.t. the dedicated Spin and parity analysis of WW/ZZ decays, due to inclusion of rate and jet kinematic information

What have we learned from Run1

- Higgs mass determined to 0.2%
- Higgs signal strength ~1, determined to 10%
- Higgs couplings tested for many scenarios and assumptions (consistent with SM).
- Higgs spin-parity is compatible with SM from all studies
- Fiducial/Differential cross-section measurement at 8TeV

Higgs boson is very consistent with SM predictions, but measurements are still statistically limited.

First Stable Beams

proton-proton collisions at 13 TeV

Run: 266904 Event: 9393006 2015-06-03 10:40:31 CEST

Run-II Datasets

uminosity ratio

- The dataset already collected at 13TeV are comparable to Run-I.
- Increased centre-of-mass energy results in much larger cross sections
- Pileup robust algorithm developed

Selected events are split into exclusive categories with the optimal separation of the Higgs boson production processes

 $m_{\gamma\gamma}$ [GeV]

The observed (expected) significance is 4.7 (5.4) σ at mH=125.09GeV

The observed (expected) significance is 5.6 (6.1) σ at mH=125.09GeV

Cross section and signal strength in $H \rightarrow \gamma \gamma$

Selected events are split into exclusive categories with the optimal separation of the Higgs boson production processes

Total Higgs production X-sec

$\sigma_{ggH} \times \mathcal{B}(H \to \gamma \gamma) =$	$65 {}^{+32}_{-31}$ fb
$\sigma_{\rm VBF} \times \mathcal{B}(H \to \gamma \gamma) =$	19.2 $^{+6.8}_{-6.1}$ fb
$\sigma_{VH} \times \mathcal{B}(H \to \gamma \gamma) =$	$1.2 ^{+6.5}_{-5.4} {\rm ~fb}$
$\sigma_{t\bar{t}H} \times \mathcal{B}(H \to \gamma \gamma) =$	$-0.3 {}^{+1.4}_{-1.1}$ fb

- Production cross section and signal strengths probe the Higgs coupling directly
- Data in reasonable agreement with the SM predictions

 $\sigma_{VBF} \times BR(H \rightarrow ZZ^*) \text{ [pb]}$

 $T \longrightarrow ZZ^* \longrightarrow 41$

- $\sigma_{ggF+bbH+ttH} \cdot Br(H \rightarrow ZZ^*)$ is 1.1 σ
- $\sigma_{VBF+VH} \cdot Br(H \rightarrow ZZ^*)$ is 1.4 σ

Observed result is very close to SM prediction.

Mass and width measurement in $H \rightarrow ZZ^* \rightarrow 4l @ CMS$

CP mixing

- Limits on the scalar (κ_{HVV}) and pseudo-scalar ($\kappa_{AVV} \cdot \sin \alpha$) are derived with a fit of the yields in each categories:
 - Compatibility to the SM prediction: κ_{HVV} is 2.1 σ , $\kappa_{AVV} \cdot sin\alpha$ is 1.8 σ

Fiducial cross section measurement

σ_{fid} [fb]

3

2

Η→γγ			
Fiducial region	Measured cross section (fb)	SM pr	rediction (fb)
Baseline	43.2 ± 14.9 (stat.) ± 4.9 (syst.)	$62.8^{+3.4}_{-4.4}$	$[N^{3}LO + XH]$
VBF-enhanced	4.0 ± 1.4 (stat.) ± 0.7 (syst.)	2.04 ± 0.13	[NNLOPS + XH]
single lepton	1.5 ± 0.8 (stat.) ± 0.2 (syst.)	0.56 ± 0.03	[NNLOPS + XH]

_

H→ZZ*

Final state	measured $\sigma_{\rm fid}$ [fb]	$\sigma_{ m fid,SM}$ [fb]
4μ	$1.28 \substack{+0.48 \\ -0.40}$	$0.93 \ ^{+0.06}_{-0.08}$
4 <i>e</i>	$0.81 \ {}^{+0.51}_{-0.38}$	$0.73 \substack{+0.05 \\ -0.06}$
2µ2e	$1.29 \substack{+0.58 \\ -0.46}$	$0.67 {}^{+0.04}_{-0.04}$
2e2µ	$1.10 \substack{+0.49 \\ -0.40}$	$0.76 \ ^{+0.05}_{-0.06}$

م. [fb]

5.1 fb⁻¹ (7 TeV), 19.7 fb⁻¹ (8 TeV), 12.9 fb⁻¹ (13 TeV)

pp \rightarrow (H \rightarrow 4l) + X

CMS Preliminary

Systematic uncertainty

Standard model (m_i = 125 GeV, N³LO gg \rightarrow H)

Model dependence

First combination of Higgs produ

■ The combination of $H \rightarrow \gamma \gamma$ and $H \rightarrow ZZ$ (expected) significance of 10σ (8σ) Parameter value norm. to \$

Products of production cross sections and branching ratios:

No significant deviation from the Standard Model predictions

$H \rightarrow WW \rightarrow ev\mu v (a) CMS$

- Only the eµ final state is studied with the 2.3fb⁻¹ early Run-II data
 To disentangle backgrounds, the 0 and 1 jet categories are split.
- L = 2.3/fb (13 TeV) CMS Preliminary CMS Preliminary L = 2.3/fb (13 TeV)Events Events 220 180 DY DY Fake Fake 200 WW tW and tt ww 160 tW and tt 180 VVV VVV **VZ**/γ*/γ $VZ/\gamma^*/\gamma$ 140 160 Signal strength Higgs -+ Data Higgs 🔶 Data 120 140 **Systematics** Systematics Oiet, eµ 120 100 Ojet, µe $\sigma/\sigma_{sm} = 0.3 \pm 0.5$ 100 80 80 60 60 40 20 Significance = 20 30 20 10 10 30 m_{II} : m^H_T m₁ : m^H_T 0.7σ CMS Preliminary L = 2.3/fb (13 TeV) CMS Preliminary L = 2.3/fb (13 TeV) Events Events 120 100 DY DY Fake Fake (expected 2.0 σ) tW and tt ww 100 tW and tt ww 80 **VZ**/γ*/γ ννν vvv $VZ/\gamma^*/\gamma$ Higgs 🔶 Data 80 -🔶 Data Higgs **Systematics** Systematics 60 1jet, µe 1jet, eµ 60 · 40 40

10

30

m, : m^H

20

<u>See more details</u> in Joshuha's talk

HIG-15-003

30

m₁ : m^H₇

20

10

20

Summary

- Comprehensive Higgs boson property measurement @ Run-I included mass, width, coupling, Spin-parity, cross section measurements etc.
- With the new 13TeV data, both ATLAS and CMS confirmed the existence of the Higgs boson:
 - A first measurement of the Higgs boson production cross section: a good agreement with SM prediction
- More results are coming soon with the increased integrated luminosity.

Bonus slides

H–

H->ZZ @ ATLAS

Analysis	Signal			Signal Background		Total	Observed	
category	$ggF + b\bar{b}H + t\bar{t}H$	VBF	WH	ZH	ZZ*	Z + jets, $t\bar{t}$	expected	
0-jet	11.2 ± 1.4	0.120 ± 0.019	0.047 ± 0.007	0.060 ± 0.006	6.2 ± 0.6	0.84 ± 0.12	18.4 ± 1.6	21
1-jet	5.7 ± 2.4	0.59 ± 0.05	0.137 ± 0.012	0.091 ± 0.008	1.62 ± 0.21	0.44 ± 0.07	8.5 ± 2.4	12
2-jet VBF enriched	1.9 ± 0.9	0.92 ± 0.07	0.074 ± 0.007	0.052 ± 0.005	0.22 ± 0.05	0.24 ± 0.11	3.4 ± 0.9	9
2-jet VH enriched	1.1 ± 0.5	0.084 ± 0.009	0.143 ± 0.012	0.101 ± 0.009	0.166 ± 0.035	0.088 ± 0.011	1.6 ± 0.5	2
VH-leptonic	0.055 ± 0.004	< 0.01	0.067 ± 0.004	0.011 ± 0.001	0.016 ± 0.002	0.012 ± 0.010	0.16 ± 0.01	0
Total	20 ± 4	1.71 ± 0.14	0.47 ± 0.04	0.315 ± 0.027	8.2 ± 0.9	1.62 ± 0.07	32 ± 4	44