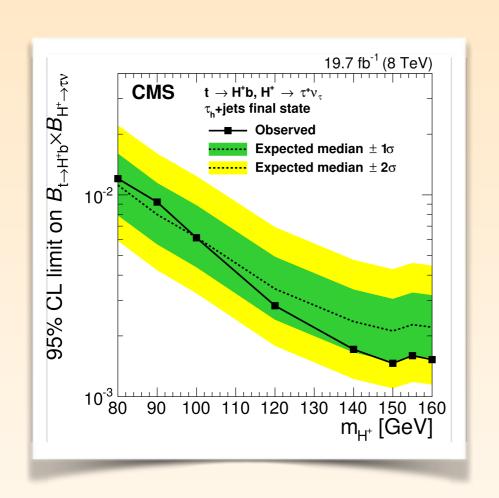
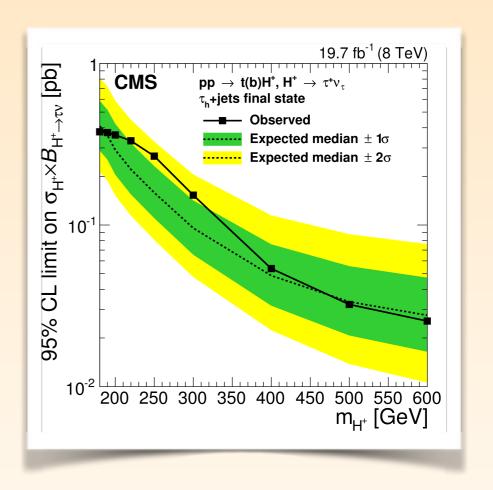


### CHARGED HIGGS BOSON PRODUCTION IN THE INTERMEDIATE MASS REGION

### Rikkert Frederix Technische Universität München

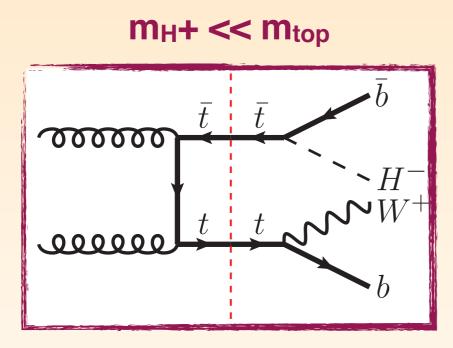

In collaboration with:


C. Degrande, V. Hirschi, M. Ubiali, M. Wiesemann, M. Zaro arXiv:1607.05291

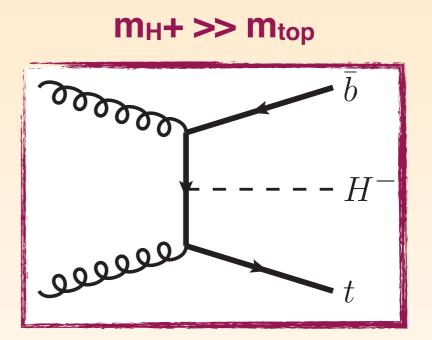
### CHARGED HIGGS PRODUCTION

- ◆ Many extensions of the SM contain charged Higgs boson
- ◆ Most commonly studied in a 2 Higgs Doublet Model
  - For example MSSM contains a (special case of) type-II 2HDM
- ◆ But also possible via Triplets Models
  - O Introduces tree-level interaction between H<sup>±</sup>WZ
  - O Very different phenomenology w.r.t. 2HDM (or nHDM)
  - O Not covered in the rest of this talk

## LIMITS ON CHARGED HIGGS PRODUCTION





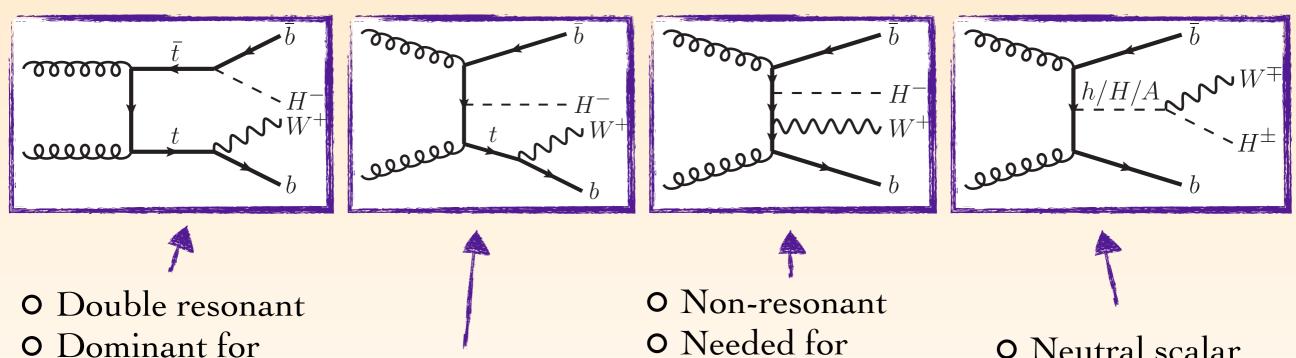


- ◆ Similar results available from ATLAS
- ◆ What about the mass range 160—180 GeV?
  - No accurate theory predictions!

# PRODUCTION FOR SMALL AND LARGE MASSES

- ◆ In a 2HDM, charged Higgs bosons couple predominantly to top and b quarks
- ◆ Hence, largest cross section in the low and high mass ranges are computed from:



◆ Essentially top quark pair production, with (at least) one top decaying to a charged Higgs

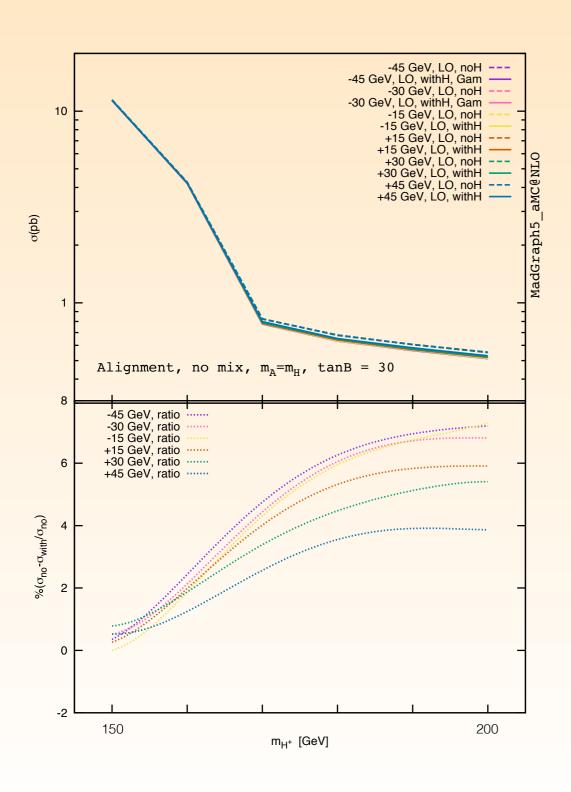



◆ Charged Higgs plus single top production. Also possible to describe using a 5 flavour scheme

- ◆ Both calculation are known to NLO accuracy or better
- ◆ Characterised by the possibility of using a zero top quark width

### CONSISTENT DESCRIPTION

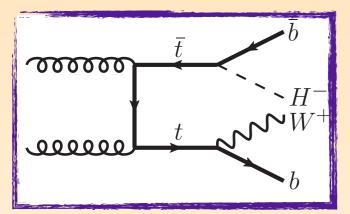
- ightharpoonup In the intermediate mass range, m<sub>H+</sub> ~ m<sub>top</sub>, one has to include the top quark width
- ✦ Hence, the complete process pp> HWbb needs to be considered. This process contains the following topologies/contributions at LO

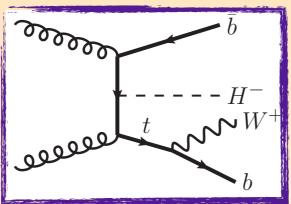


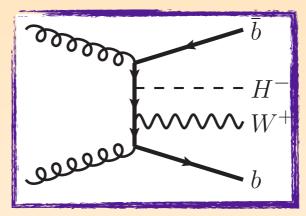

- $m_{H}+>> m_{top}$
- O Single resonant gauge invarianceO Dominant for
- Neutral scalar contributions
- Induce additional model dependence

◆ For accurate predictions, need at least NLO accuracy

 $m_{H+} \ll m_{top}$ 

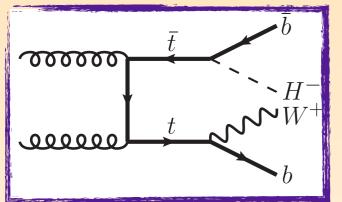

## CONTRIBUTIONS WITH NEUTRAL SCALARS

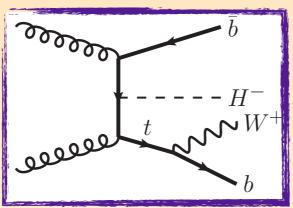


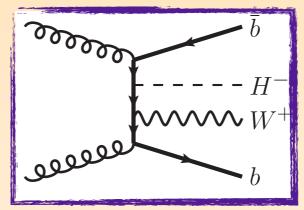


- ★ A model scan at LO in the region allowed by EW precision fits shows that the contributions with neutral scalars are small\* (at most 7% (they are largest in the alignment region, with m<sub>H+</sub> > 180 GeV and m<sub>H</sub> = m<sub>A</sub> = m<sub>H+</sub> -45 GeV)), and we do not include them in the computation
  - O They can be included at LO only, without hampering the NLO accuracy of the results
  - Only 2 new parameters: the charged Higgs mass and tanβ, just like in the low and high mass regions

<sup>\*</sup> As long as they cannot go on-shell

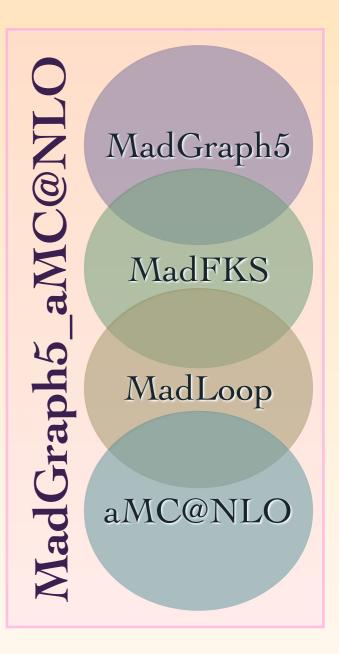
### SETUP



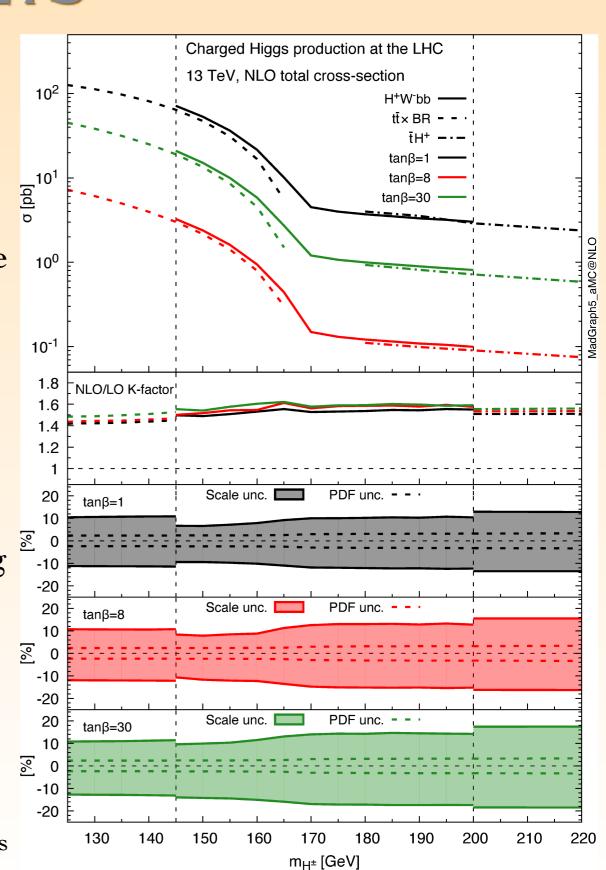

- ◆ Complete NLO in QCD corrections
- ◆ 4 flavour scheme (massive b quark, no initial state b quarks)
- ◆ Focus on type-II 2HDM; considering tanβ=1, 8 and 30; others can be obtained from inter/extrapolation (bottom Yukawa: y<sub>b</sub> ~ tanβ, top Yukawa: y<sub>top</sub> ~ 1/tanβ)
- ◆ Complex mass scheme to include the top quark width in a gauge invariant way
- ◆ Renormalisation and factorisation scales are set to 125 GeV
  - O Matches default scale for small mass and large mass 4FS calculations
  - O Varied independently up and down by a factor 2 to approximate scale uncertainty
- ♦ NLO 4-flavour PDF4LHC15 α<sub>S</sub> and parton distributions (also for the LO results)
- ♦ top and b mass parameters (and Yukawa) following the HXSWG recommendations


### SETUP








- ◆ Complete NLO in QCD corrections
- ♦ 4 flavour scheme (massive b quark, no initial state b quarks)
- ♦ Focus on type-II 2HDM; considering tanβ=1, 8 and 30; others can be obtained from inter/extrapolation (bottom Yukawa: y<sub>b</sub> ~ tanβ, top Yukawa: y<sub>top</sub> ~ 1/tanβ)
- ◆ Complex mass scheme to include the top quark width in a gauge invariant way
- ◆ Renormalisation and factorisation scales are set to 125 GeV
  - O Matches default scale for small mass and large mass 4FS calculations
  - O Varied independently up and down by a factor 2 to approximate scale uncertainty
- ♦ NLO 4-flavour PDF4LHC15 α<sub>S</sub> and parton distributions (also for the LO results)
- ♦ top and b mass parameters (and Yukawa) following the HXSWG recommendations



### RESULTS

- ◆ K-factor about 1.5-1.6 \*, with very mild dependence on the charged Higgs mass and tanß
- ◆ NLO scale dependence 8-17%; larger for large tanß due to extra scale dependence in bottom Yukawa
- ◆ Smooth interpolation between dedicated low and high mass calculations with the new results
  - O Dedicated high/low mass calculations using same setup/inputs as intermediate results
- ◆ O(10%) steps due to missing single (non) mass dedicated calculations

<sup>-20</sup> resonant contributions in the low- (high-) 20 tanß=30 10 % -10 -20 \* usual precaution: large dependence on scales and other inputs 150 Rikkert Frederix



Ŏ

#### **OTHER TAN-BETA VALUES**

- ♦ We extended the MadGraph5\_aMC@NLO framework to give you separate results for each coupling order, i.e.  $\sigma(y_b^2)$ ,  $\sigma(y_by_{top})$ ,  $\sigma(y_{top}^2)$
- ♦ This allows for easy inter/extrapolation to other tanβ values using

$$\sigma(\tan \beta') = \left[ \left( \frac{\tan \beta'}{\tan \beta} \right)^2 \sigma_{y_b^2}(\tan \beta) + \sigma_{y_b y_t}(\tan \beta) + \left( \frac{\tan \beta}{\tan \beta'} \right)^2 \sigma_{y_t^2}(\tan \beta) \right] \times \left( \frac{\Gamma_t(\tan \beta)}{\Gamma_t(\tan \beta')} \right)^2$$

- ♦ Cross checked that using this formula, the cross sections for  $\tan\beta=1$  and  $\tan\beta=30$  can be obtained from the  $\tan\beta=8$  results within about 1% (which is the MC integration uncertainty for each of the results)
- ◆ Also cross sections for other scenarios, e.g. a type-I 2HDM, can be obtained in this way
- ◆ Cross sections available at: https://twiki.cern.ch/twiki/bin/view/LHCPhysics/LHCHXSWGMSSMCharged#Intermediate\_mass\_145\_200\_GeV\_ch

### CONCLUSIONS

- ◆ The long standing problem of charged Higgs production in the intermediate mass range has now been solved
- ◆ This allows one to set meaning full limits on charged Higgs cross sections, which can be compared to accurate theoretical predictions
- ◆ New Results match rather will with dedicated, simpler low and high mass calculation (which are based on neglecting the top quark width)
- ♦ Our central NLO value is about 1.5-1.6 times larger than our LO value, with only a very mild dependence on the charged Higgs mass and tanβ value
  - Outlook: would be interesting to see if this factorisation is also valid for more exclusive observables or differential distributions