## Resummation in Higgs Physics

#### **Lorena Rothen**

Deutsches Elektronen-Synchrotron (DESY)

QCD@LHC Zurich, Switzerland 22-26 August 2016



#### Outline

• Introduction: Higgs Production and Resummation

Higgs Transverse Momentum Distribution

Higgs Production with a Jet Veto

Summary

## After Higgs Discovery

Higgs discovery: Not necessarily theoretical precision physics needed.

To test Higgs properties or set exclusion limits: High accuracy in QCD (+EW) predictions

- Couplings, Mass, CP
   SM: no free parameters for the couplings (masses → couplings)
- Differential and exclusive measurements are of key importance





Depending on observable, various theoretical challenges to obtain required precision.

## Resummation of Large Logarithms

- High energy physics → small coupling constant
   Perturbative expansion in the coupling (fixed order predictions).
- When we put exclusive constraints on the transverse momentum of radiation (e.g. kinematical distributions or cuts)
  - Only soft and collinear emission allowed
  - Sudakov double logarithms appear in the fixed order expansion, which can be large and spoil convergence of the series.

$$\alpha_s^n \ln(\lambda)^{2n} \sim \mathcal{O}(1)$$
 for  $\lambda \ll 1$ 

Need to be resummed to all orders to obtain a reliable theoretical prediction

#### Resummation of Large Logarithms

Double logarithms generally exponentiate.

$$\sigma \sim \sigma_0 \exp(\alpha_s L^2 + \alpha_s L + \alpha_s^2 L + \dots)$$
LL NLL NNLL

 $L = \ln(\lambda)$  $\lambda$  : small parameter (depends on observable)

Based on this exponentiation we can define a resummed perturbative order

$$\sigma \sim \sigma_0 \left(1 + \alpha_s \left(L^2 + L + c1\right) \right) \qquad \text{NLO}$$
 
$$+ \alpha_s^2 \left(L^4 + L^3 + L^2 + L + c2\right) \qquad \text{NNLO}$$
 
$$+ \alpha_s^3 \left(\vdots + \vdots + \vdots + \vdots + \dots\right) \qquad \text{NNNLO}$$
 LL NLL NNLL

| Resummed<br>Order | $\Gamma_{ m cusp}$ | $\gamma, F_{gg}$ | $I_{g \leftarrow i}$ | Matching to: |
|-------------------|--------------------|------------------|----------------------|--------------|
| LL                | 1-loop             | tree             | -                    | -            |
| NLL               | 2-loop             | 1-loop           | tree                 | LO           |
| NNLL              | 3-loop             | 2-loop           | 1-loop               | NLO          |
| N <sub>3</sub> ΓΓ | 4-loop             | 3-loop           | 2-loop               | NNLO         |

Matching to fixed order results includes power suppressed terms

.

## Resummation is crucial for many Collider Observables

- Threshold
- Transverse Momentum
- Event Shapes
- Jet Veto
- Electroweak
- Masses
- Jet Substructure
- •

## Resummation is crucial for many Collider Observables

- Threshold
- Transverse Momentum
- Event Shapes
- Jet Veto
- Electroweak
- Masses
- Jet Substructure
- •

This Talk (for Higgs production)

#### Various Tools available

#### Resummation by:

- Collins-Soper-Sterman (CSS) type
   [Collins, Soper, Sterman et al., Bozzi, Catani, de Florian, Ferrera, Grazzini]
- Soft-Collinear Effective Theory (SCET)
   [Bauer, Fleming, Pirjol, Stewart; Rothstein, Beneke, Chapovsky, Diehl, Feldmann]
- Branching algorithm
   [Catani, Marchesini, Webber et al.]

Factorization of the cross section allows for resummation via renormalization group evolution (RGE).

CAESAR/ARES
 [Banfi, Salam, Zanderighi, +McAslan]

Resummation achieved by numerically simulating QCD radiation to all orders.

## **Collider Physics**

#### Typical multi-scale problem!

- Hard collision
- Proton structure (non-perturbative long distance physics)
- Collinear & soft radiation

All LHC calculation rely on the factorization

$$d\sigma = d\hat{\sigma} \otimes ff$$
 partonic cross section

parton distribution functions (PDFs)



sciencenode.org/feature/sherpa-and-open-science-grid-predicting-emergence-jets.php

## Resummation by SCET

Soft-collinear effective theory (SCET) is an effective field theory of QCD: [Bauer, Fleming, Pirjol, Stewart; Rothstein, Beneke, Chapovsky, Diehl, Feldmann]

- Low-energy degrees of freedom: Soft and Collinear fields
- Off-shell modes are integrated out. Hard-scattering encoded in the Wilson coefficents of the operators.
- Advantages:
  - Operator definition (manifest gauge invariance).
  - Systematic scale separation. Derivation of factorization theorems.
  - Resummation by standard RGE methods.
  - Power corrections manifest at Lagrangian level.

# Jet Binning and the Jet Veto

#### Role of the Jet Veto

- Events are binned by exclusive jet multiplicity.
- Channel to check coupling to W boson  $H o WW^*$ 
  - Problem: large top background







Solution: jet veto
 Discard events including jets with transverse momentum:

$$p_T^{\mathrm{Jet}} > p_T^{\mathrm{veto}} \sim 15 - 30 \,\mathrm{GeV}$$

- Formalism applicable to production of any color singlet (Z, WW, ...)
- Initial-state discrimination → Talk by Markus Ebert

#### Resummation for the Jet Veto

#### Recent work:

- NNLL+NNLO for beam thrust: Berger, Marcantonini, Stewart, Tackmann, Waalewijn '11 [1012.4480]
- NNLL+NNLO: Banfi, Salam, Zanderighi '12 + Monni '12 [1206.4998]
- N<sup>3</sup>LL<sub>p</sub>+NNLO: Becher, Neubert '12 +LR '13 [1307.0025]
- NNLL'+NNLO: Tackmann, Walsh, Zuberi '12 + Stewart, Walsh '13 [1307.1808]
- Small Radius Jets: Dasgupta, Dreyer, Salam, Soyez '14 [1411.5182]
- NNLL+N<sup>3</sup>LO+LL<sub>R</sub>: Banfi, Caola, Dreyer, Monni, Salam, Zanderighi, Dulat '15 [1511.02886]
- Quark-mass effects: Banfi, Monni, Zanderighi '13 [1308.4634]
- Higgs plus one jet: Liu, Petriello '13 [1303.4405]
- Combination across jet bins: Bougheza, Liu, Petriello, Tackmann, Walsh '13 [1312.4535]
- Rapidity dependent jet vetos: Gangal, Stahlhofen, Tackmann '14 +Gaunt '16 [1412.4792, 1608.01999]

#### ATLAS vs Theory

ATLAS compared results to

- NNLL'+NNLO
   (includes π<sup>2</sup> Resummation)
- Good agreement with data
- Compared to theoretical predictions from
  - N<sup>3</sup>LL<sub>p</sub>+NNLO: Becher, Neubert, LR '13
  - NNLL+NNLO: Banfi et al. '12

results agree within error bands and similar size uncertainties are found.

[ATLAS Sept. 2015, 1504.05833] **ATLAS**  $pp \rightarrow H$ → data, tot. unc. syst. unc.  $\sqrt{s} = 8 \text{ TeV}, 20.3 \text{ fb}^{-1}$ anti- $k_{+}R = 0.4, p_{-}^{jet} > 30 \text{ GeV}$  $\sigma[\mathrm{pb}]$ NNLOPS+PY8 + XH MG5\_aMC@NLO+PY8 + XH  $10^{2}$ SHERPA 2.1.1 + XH STWZ + XH BLPTW + XH  $XH = VBF + VH + t\bar{t}H + b\bar{b}H$ Jet Veto =2= 0= 1

#### NNLL+N<sup>3</sup>LO+LL<sub>R</sub> for Jet Veto

Predictions for the jet-veto efficiency and cross section at the LHC by Banfi et al. '15 [1511.02886]

- Total N<sup>3</sup>LO cross section; H+1 Jet NNLO.
- Exact top- and bottom-mass effects up to NLO.
- NNLL resummation.
- Small jet radius to LL accuracy:
  - Terms like

$$\alpha_s^n \log^n \left( R^2 \right)$$

present in the perturbative series.

- For small values of R these could be large.
- LL resummation achieved by Dasgupta et al. '14.
- No large effect seen in Higgs produciton with a jet veto for current choices of R.



## NNLL+N<sup>3</sup>LO+LL<sub>R</sub> for Jet Veto



- Use more "aggressive" treatment of resummation uncertainties than [Stewart et al. '13] and [Becher et al. '13] and  $\mu = m_H/2$  as the central scale (very small N<sup>3</sup>LO uncertainty).
- PDF and strong coupling uncertainties are not included.
- Higher-order quark mass effect, electroweak- and non-perturbative-effects are of the same order as the uncertainty.

#### Run 2 Data at 13 TeV

 $H \rightarrow y y$  in bins of inclusive jet multiplicity

- N3LO+JVE corresponds to NNLL+N<sup>3</sup>LO+LL<sub>R</sub> [Banfi et al.]
- Measured cross section a bit lower (not statistically significant)
- Except for the undershoot in the low  $p_T^{\rm Jet}$  region, good agreement.



[ATLAS-CONF-2016-067, August '16]

#### Higgs plus Jets / Multiple scales

Exclusive 1-jet bin is a multi-scale problem

$$p_T^{\text{jet 2}} < p_T^{\text{veto}} < p_T^{\text{jet 1}} < m_H$$

- Additional scale → additional large logarithms
- Different resummation needed for each region
- Liu, Petriello '12: NLL'+NLO 1-jet bin direct resummation (resummation of  $p_T^{\rm jet~2} \ll p_T^{\rm veto}$  and  $p_T^{\rm jet~1}$  at fixed order, valid for the high  $p_T^{\rm jet~1} \sim m_H$  region)
- Bougheza et al. '13:
   Framework to consistently combine 0-jet and 1-jet bin resummations.
  - Indirect method for resummation in the small region  $p_T^{\rm jet}$  given.
  - Description of uncertainty correlations (covariance matrix).
- Jet observables: Non-global logarithms
  - → Talk by T. Becher



Smooth transition (independent of precise  $p_T^{\text{off}}$ )

# Transverse Momentum Distributions

#### Transverse Momentum Distributions

$$P+P \rightarrow H(q)+X$$

- The transverse momentum  $(q_T)$  spectrum of bosons is among the most basic kinematic distributions at hadron colliders.
- At fixed order logs

$$\alpha_s^n L^m \quad (L = \log(m_H/q_T), \, m \le 2n - 1)$$

appear, which spoil the convergence at small  $q_T$ 

Resummation essential in the region

$$q_T \ll m_H$$

- Transition region (turn off resummation) between fixed order at large  $q_T$  and resummed result at low values.
- Transverse PDFs (Beam functions)
- CSS & SCET factorization formulas are in impact parameter space  $(x_T)$ .



#### (Higgs) Transverse Momentum Resummation

Monte Carlos: Herwig, Pythia, Sherpa, ...

Analytic tools:

- CSS type:
  - HqT (NNLL+(N)NLO): Bozzi, Catani, de Florian, Ferrera, Grazzini, Tommasini
  - DYqT, DYRes, HRes (NNLL+NNLO) '12: Catani, Cieri, de Florian, Ferrera, Grazzini,
     Tommasini

#### SCET:

- NNLL+NLO (CuTe 1.0): Becher, Neubert, Wilhelm '12 [1212.2621]
- NNLL+NNLO: Neill, Rothstein, Vaidya '15 [1503.00005]
- Gluon TMDPDFs: Echevarria, Kasemets, Mulders, Pisano '15 [1502.05354]
- NNLO TMDPDFs: Gehrmann, Luebbert, Yang '14 [1403.6451]
- Rapidity anomalous dimension @ 3 loops (N<sup>3</sup>LL): Li, Zhu '16 [1604.01404]
- N<sup>3</sup>LL+NNLO (CuTe 2.0): Becher, Luebbert, Neubert, Wilhelm [in progress]
- CAESAR/ARES approach: NNLL+NNLO Monni, Re, Torielli '16 [1604.02191]
- Quark-mass effects (top and bottom):
   Grazzini, Sargsyan '13 [1306.4581]; Banfi, Monni, Zanderighi '13 [1308.4634]
- Non-perturbative effects: Becher, Bell '13 [1312.5327]

## N<sup>3</sup>LL<sub>p</sub>+NNLO with CuTe

#### Cute 2.0:

- $\varepsilon^5$  N<sup>3</sup>LL<sub>p</sub>+NNLO precision
- $\pi^2$  Resummation
- 4-loop cusp Padé approx.
- q<sub>T</sub> matching scheme
- Smooth transit to pure fixed order for q<sub>T</sub> between M/2 and 3M/4.
- In following plots an estimate is used for F<sup>(3,0)</sup>. Recently computed value lies within this estimate and would lead to a bit smaller uncertainty bands.



- Good agreement
- Uncertainties include:
  - Higher order in QCD ( $\mu$  and F<sup>(3,0)</sup> variations); PDF uncertainty; nonperturbative effects ( $q_T < 3$  GeV).



[Becher, Luebbert, Neubert, Wilhelm]pgr.

#### CuTe vs ATLAS for Higgs



[Becher, Luebbert, Neubert, Wilhelm]pgr.

#### Comparison with Higgs ATLAS 8 TeV data Hep-ex/1504.05833 20.3 fb<sup>-1</sup>:

- Siezable uncertainty for Higgs production: Mainly in fixed order part (high  $q_T$  region).
- Low statistics for data
  - Can the first experimental bin be trusted (right hand plot: first bin is dropped)
  - Also normalizing to total cross section of the data leads to improved agreement.
- Total Higgs boson production is larger and produced with larger transverse momentum and more associated jets than predicted by current SM calculations.

## CuTe vs HqT / HRes vs ATLAS



[Becher, Luebbert, Neubert, Wilhelm]pgr.

- Similar shape as HqT [Bozzi et al.] (slightly larger result for CuTe)
- Integrated  $\sigma$ 
  - $-\sigma_{CuTe} = 44 \text{ pb } \pm 8\%,$
  - $\sigma_{HqT} = 40 \text{ pb } \pm 6\%,$
  - $-\sigma_{N3LO} = 44.3 \text{ pb} \pm 2.6\%$



[ATLAS Sept. 2015, 1504.05833]

- HRes: NNLL'+NNLO
  - Includes finite top and bottom quark masses
  - Full kinematic information on Higgs and decays.
- Similar comparison to ATLAS Higgs 8 TeV data as CuTe result on previous page.

#### **CEASAR Approach / Mass Effects**



In 1604.02191: New method entirely formulated in momentum space (NNLL+NNLO).

- Does not rely on factorization theorem
- Moderately higher than HqT in the peak region



Study of impact of finite top and bottom-quark masses up to  $O(\alpha_s^3)$ 

- Distortion of spectrum
- At NNLL+NNLO mass effects important at low  $q_T$  (10% effect  $q_T < m_b$ )

#### Automation and Resummation: a few Examples

Era of automation for higher order resummation has started for various observables (Higher precision than standard Monte Carlo + Parton Showers)

Jet Veto:

- [Becher, R. Frederix, M. Neubert and LR, '15]
- Automated framework for weak bosons production at NNLL+NLO accuracy
  - Implemented within MadGraph5\_aMC@NLO (Public code)
  - Straightforward to include decays and cuts on the decay products.
- HRes [Bozzi, Catani, Cieri, de Florian, Ferrera, Grazzini, Tommasini]
  - Transverse Momentum: Retains the full kinematic information on the Higgs boson and its decay products.
- GENEVA (Drell-Yan process) [Alioli et al.]
- 2 Loop soft functions [Bell, Rahn, Talbert '15]
- NNLL Resummation for event shape observables: ARES [Banfi, McAslan, Monni, Zanderighi, '15]
- [Farhi, Feige, Freytsis, Schwartz´15], [Gerwick, Hoeche, Marzani, Schumann´15], ...

## Summary

- Run 2 → more data available to test various Higgs properties.
- Precise theoretical predictions essential.
- Exclusive observables, kinematic distributions often suffer from large logarithms that need to be resummed (various different approaches).
- Great achievements: Up to N<sup>3</sup>LO fixed order and up to N<sup>3</sup>LL resummed precision reached for certain observables.

# Thank you!